Muutke küpsiste eelistusi

E-raamat: Genetic Programming Theory and Practice XIX

Edited by , Edited by , Edited by , Edited by
  • Formaat - EPUB+DRM
  • Hind: 160,54 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book brings together some of the most impactful researchers in the field of Genetic Programming (GP), each one working on unique and interesting intersections of theoretical development and practical applications of this evolutionary-based machine learning paradigm. Topics of particular interest for this year´s book include powerful modeling techniques through GP-based symbolic regression, novel selection mechanisms that help guide the evolutionary process, modular approaches to GP, and applications in cybersecurity, biomedicine and program synthesis, as well as papers by practitioner of GP that focus on usability and real-world results. In summary, readers will get a glimpse of the current state of the art in GP research.
Chapter
1. Symbolic Regression in Materials Science: Discovering Interatomic Potentials from Data.
Chapter
2. Correlation versus RMSE Loss Functions in Symbolic Regression Tasks.
Chapter
3. GUI-Based, Efficient Genetic Programming and AI Planning For Unity3D.
Chapter
4. Genetic Programming for Interpretable and Explainable Machine Learning.
Chapter
5. Biological Strategies ParetoGP Enables Analysis of Wide and Ill-Conditioned Data from Nonlinear Systems.
Chapter
6. GP-Based Generative Adversarial Models.
Chapter
7. Modelling Hierarchical Architectures with Genetic Programming and Neuroscience Knowledge for Image Classification through Inferential
Knowledge.
Chapter
8. Life as a Cyber-Bio-Physical System.
Chapter
9. STREAMLINE: A Simple, Transparent, End-To-End Automated Machine Learning Pipeline Facilitating Data Analysis and Algorithm Comparison.
Chapter
10. Evolving Complexity is Hard.
Chapter
11. ESSAY: Computers Are Useless ... They Only Give Us Answers.