Muutke küpsiste eelistusi

E-raamat: Genetic Programming Theory and Practice XVI

Edited by , Edited by , Edited by
  • Formaat - PDF+DRM
  • Hind: 147,58 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

These contributions, written by the foremost international researchers and practitioners of Genetic Programming (GP), explore the synergy between theoretical and empirical results on real-world problems, producing a comprehensive view of the state of the art in GP. Topics in this volume include: evolving developmental programs for neural networks solving multiple problems, tangled program, transfer learning and outlier detection using GP, program search for machine learning pipelines in reinforcement learning, automatic programming with GP, new variants of GP, like SignalGP, variants of lexicase selection, and symbolic regression and classification techniques. The volume includes several chapters on best practices and lessons learned from hands-on experience. Readers will discover large-scale, real-world applications of GP to a variety of problem domains via in-depth presentations of the latest and most significant results.


1 Exploring Genetic Programming Systems with MAP-Elites.- 2 The Evolutionary Buffet Method.- 3 Emergent Policy Discovery for Visual Reinforcement Learning through Tangled Program Graphs: A Tutorial.- 4 Strong Typing, Swarm Enhancement, and Deep Learning Feature Selection in the Pursuit of Symbolic Regression-Classification.- 5 Cluster Analysis of a Symbolic Regression Search Space.- 6 What else is in an evolved name? Exploring evolvable specificity with SignalGP.- Lexicase Selection Beyond Genetic Programming.- 8 Evolving developmental programs that build neural networks for solving multiple problems.- 9 The Elephant in the Room - Towards the Application of Genetic Programming to Automatic Programming.- 10 Untapped Potential of Genetic Programming: Transfer Learning and Outlier Removal.- 11 Program Search for Machine Learning Pipelines Leveraging Symbolic Planning and Reinforcement Learning.