Preface |
|
xiii | |
Preface to first edition |
|
xv | |
A note about software |
|
xix | |
|
|
1 | (6) |
|
1.1 Development of chemical modeling |
|
|
2 | (3) |
|
|
5 | (2) |
|
|
7 | (20) |
|
|
7 | (5) |
|
2.2 Configurations of reaction models |
|
|
12 | (10) |
|
2.3 Uncertainty in geochemical modeling |
|
|
22 | (5) |
|
Part I Equilibrium in natural waters |
|
|
27 | (164) |
|
|
29 | (24) |
|
3.1 Thermodynamic description of equilibrium |
|
|
30 | (6) |
|
|
36 | (2) |
|
|
38 | (12) |
|
3.4 Number of variables and the phase rule |
|
|
50 | (3) |
|
4 Solving for the equilibrium state |
|
|
53 | (18) |
|
|
53 | (2) |
|
4.2 Solving nonlinear equations |
|
|
55 | (5) |
|
4.3 Solving the governing equations |
|
|
60 | (7) |
|
4.4 Finding the stable phase assemblage |
|
|
67 | (4) |
|
|
71 | (10) |
|
5.1 Determining the transformation matrix |
|
|
72 | (3) |
|
|
75 | (1) |
|
5.3 Altering equilibrium constants |
|
|
76 | (1) |
|
5.4 Reexpressing bulk composition |
|
|
77 | (4) |
|
6 Equilibrium models of natural waters |
|
|
81 | (22) |
|
6.1 Chemical model of seawater |
|
|
82 | (11) |
|
|
93 | (4) |
|
|
97 | (6) |
|
|
103 | (12) |
|
7.1 Redox potentials in natural waters |
|
|
103 | (2) |
|
|
105 | (2) |
|
7.3 Monro do Ferro groundwater |
|
|
107 | (3) |
|
7.4 Energy available for microbial respiration |
|
|
110 | (5) |
|
|
115 | (22) |
|
|
117 | (6) |
|
|
123 | (4) |
|
8.3 Comparison of the methods |
|
|
127 | (6) |
|
8.4 Brine deposit at Sebkhat El Melah |
|
|
133 | (4) |
|
9 Sorption and ion exchange |
|
|
137 | (18) |
|
9.1 Distribution coefficient (Kd) approach |
|
|
137 | (3) |
|
|
140 | (1) |
|
|
141 | (2) |
|
|
143 | (3) |
|
|
146 | (4) |
|
|
150 | (5) |
|
|
155 | (14) |
|
10.1 Complexation reactions |
|
|
156 | (4) |
|
|
160 | (1) |
|
|
161 | (3) |
|
|
164 | (5) |
|
11 Automatic reaction balancing |
|
|
169 | (12) |
|
11.1 Calculation procedure |
|
|
169 | (6) |
|
11.2 Dissolution of pyrite |
|
|
175 | (1) |
|
11.3 Equilibrium equations |
|
|
176 | (5) |
|
|
181 | (10) |
|
12.1 The question of uniqueness |
|
|
182 | (1) |
|
12.2 Examples of nonunique solutions |
|
|
182 | (7) |
|
12.3 Coping with nonuniqueness |
|
|
189 | (2) |
|
Part II Reaction processes |
|
|
191 | (126) |
|
|
193 | (8) |
|
|
193 | (3) |
|
13.2 Extracting the overall reaction |
|
|
196 | (2) |
|
13.3 Special configurations |
|
|
198 | (3) |
|
14 Polythermal, fixed, and sliding paths |
|
|
201 | (16) |
|
14.1 Polythermal reaction paths |
|
|
201 | (2) |
|
14.2 Fixed activity and fugacity paths |
|
|
203 | (4) |
|
14.3 Sliding activity and fugacity paths |
|
|
207 | (10) |
|
|
217 | (14) |
|
|
218 | (4) |
|
|
222 | (6) |
|
|
228 | (3) |
|
16 Kinetics of dissolution and precipitation |
|
|
231 | (14) |
|
|
232 | (4) |
|
16.2 From laboratory to application |
|
|
236 | (2) |
|
|
238 | (2) |
|
16.4 Example calculations |
|
|
240 | (2) |
|
|
242 | (3) |
|
|
245 | (12) |
|
17.1 Rate laws for oxidation and reduction |
|
|
246 | (2) |
|
17.2 Heterogeneous catalysis |
|
|
248 | (2) |
|
|
250 | (2) |
|
|
252 | (2) |
|
|
254 | (3) |
|
|
257 | (12) |
|
18.1 Microbial respiration and fermentation |
|
|
257 | (3) |
|
|
260 | (1) |
|
18.3 Thermodynamically consistent rate laws |
|
|
261 | (2) |
|
18.4 General kinetic model |
|
|
263 | (2) |
|
|
265 | (4) |
|
|
269 | (16) |
|
19.1 Isotope fractionation |
|
|
270 | (2) |
|
19.2 Mass balance equations |
|
|
272 | (3) |
|
19.3 Fractionation in reacting systems |
|
|
275 | (4) |
|
19.4 Dolomitization of a limestone |
|
|
279 | (6) |
|
20 Transport in flowing groundwater |
|
|
285 | (16) |
|
|
285 | (2) |
|
|
287 | (5) |
|
20.3 Advection-dispersion equation |
|
|
292 | (2) |
|
|
294 | (5) |
|
|
299 | (2) |
|
|
301 | (16) |
|
|
301 | (5) |
|
|
306 | (4) |
|
21.3 Example calculations |
|
|
310 | (7) |
|
Part III Applied reaction modeling |
|
|
317 | (168) |
|
|
319 | (22) |
|
22.1 Origin of a fluorite deposit |
|
|
320 | (5) |
|
|
325 | (6) |
|
22.3 Energy available to thermophiles |
|
|
331 | (10) |
|
|
341 | (16) |
|
23.1 Principles of geothermometry |
|
|
342 | (5) |
|
23.2 Hot spring at Hveravik, Iceland |
|
|
347 | (3) |
|
23.3 Geothermal fields in Iceland |
|
|
350 | (7) |
|
|
357 | (16) |
|
24.1 Springs and saline lakes of the Sierra Nevada |
|
|
357 | (5) |
|
24.2 Chemical evolution of Mono Lake |
|
|
362 | (5) |
|
24.3 Evaporation of seawater |
|
|
367 | (6) |
|
|
373 | (14) |
|
25.1 Dolomite cement in the Gippsland basin |
|
|
374 | (4) |
|
25.2 Lyons sandstone, Denver basin |
|
|
378 | (9) |
|
26 Kinetics of water-rock interaction |
|
|
387 | (18) |
|
26.1 Approach to equilibrium and steady state |
|
|
387 | (6) |
|
26.2 Quartz deposition in a fracture |
|
|
393 | (2) |
|
26.3 Silica transport in an aquifer |
|
|
395 | (2) |
|
|
397 | (3) |
|
26.5 Dissolution of albite |
|
|
400 | (5) |
|
|
405 | (10) |
|
27.1 Rainwater infiltration in an aquifer |
|
|
405 | (4) |
|
27.2 Weathering in a soil |
|
|
409 | (6) |
|
28 Oxidation and reduction |
|
|
415 | (12) |
|
28.1 Uranyl reduction by ferrous iron |
|
|
415 | (3) |
|
28.2 Autocatalytic oxidation of manganese |
|
|
418 | (4) |
|
28.3 Microbial degradation of phenol |
|
|
422 | (5) |
|
|
427 | (8) |
|
29.1 Caustic waste injected in dolomite |
|
|
428 | (3) |
|
|
431 | (4) |
|
|
435 | (14) |
|
30.1 Sulfate scaling in North Sea oil fields |
|
|
436 | (6) |
|
|
442 | (7) |
|
|
449 | (12) |
|
31.1 Role of atmospheric oxygen |
|
|
450 | (3) |
|
31.2 Buffering by wall rocks |
|
|
453 | (3) |
|
31.3 Fate of dissolved metals |
|
|
456 | (5) |
|
32 Contamination and remediation |
|
|
461 | (10) |
|
32.1 Contamination with inorganic lead |
|
|
462 | (6) |
|
32.2 Groundwater chromatography |
|
|
468 | (3) |
|
|
471 | (14) |
|
33.1 Arsenate reduction by Bacillus arsenicoselenatis |
|
|
471 | (6) |
|
33.2 Zoning in an aquifer |
|
|
477 | (8) |
Appendix 1 Sources of modeling software |
|
485 | (6) |
Appendix 2 Evaluating the HMW activity model |
|
491 | (8) |
Appendix 3 Minerals in the LLNL database |
|
499 | (8) |
Appendix 4 Nonlinear rate laws |
|
507 | (2) |
References |
|
509 | (27) |
Index |
|
536 | |