Muutke küpsiste eelistusi

E-raamat: Geodesics, Retracts, and the Norm-Preserving Extension Property in the Symmetrized Bidisc

Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 107,41 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Agler, Lykova, and Young determine the holomorphic retractions of the symmetrized bidisc and its subsets, which permit the extension of holomorphic functions without an increase of the supremum norm. The methods they use are of independent interest, they say, and they analyze the complex geodesics of the symmetrized bidisc, and show that there are five qualitatively different types of them. Their topics include extremal problems in the symmetrized bidisc, purely unbalanced and exceptional datums, geodesics and sets with the norm-preserving extension property, proof of the main theorem, and applications to the theory of spectral sets. Annotation ©2019 Ringgold, Inc., Portland, OR (protoview.com)
Introduction
An overview
Extremal problems in the symmetrized bidisc $G$
Complex geodesics in $G$
The retracts of $G$ and the bidisc $\mathbb {D}^2$
Purely unbalanced and exceptional datums in $G$
A geometric classification of geodesics in $G$
Balanced geodesics in $G$
Geodesics and sets $V$ with the norm-preserving extension property in $G$
Anomalous sets $\mathcal {R}\cup \mathcal {D}$ with the norm-preserving
extension property in $G$
$V$ and a circular region $R$ in the plane
Proof of the main theorem
Sets in $\mathbb {D}^2$ with the symmetric extension property
Applications to the theory of spectral sets
Anomalous sets with the norm-preserving extension property in some other
domains
Appendix A. Some useful facts about the symmetrized bidisc
Appendix B. Types of geodesic: a crib and some cartoons
Bibliography
Index.
Jim Agler, University of California at San Diego, CA.

Zinaida Lykova, Newcastle University, Newcastle upon Tyne, United Kingdom.

Nicholas Young, Newcastle University, Newcastle upon Tyne, United Kingdom.