Muutke küpsiste eelistusi

E-raamat: Geographic Data Analysis Using R

  • Formaat: EPUB+DRM
  • Ilmumisaeg: 02-Aug-2024
  • Kirjastus: Springer Nature
  • Keel: eng
  • ISBN-13: 9789819740222
  • Formaat - EPUB+DRM
  • Hind: 172,89 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: EPUB+DRM
  • Ilmumisaeg: 02-Aug-2024
  • Kirjastus: Springer Nature
  • Keel: eng
  • ISBN-13: 9789819740222

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book is structured to encompass both the foundational and specialized aspects of quantitative analysis in geography. The basic content covers descriptive statistical analysis and correlation analysis of geographical data, while the professional content delves into more advanced topics like linear regression analysis, geographically weighted regression analysis, time series analysis, cluster analysis, principal component analysis, Markov chain analysis, and geographical network analysis. The methodologies span from widely utilized techniques to more recent developments, and the data primarily originates from reputable sources in China. The example code provided in the book can be executed using R packages available on the CRAN website.

This book is an invaluable resource for undergraduate and graduate students, as well as researchers interested in learning and applying R for processing, visualizing, and analyzing geographic data. It serves as an introductory course in quantitative methods in geography for students in geography departments. Additionally, it is an ideal supplementary text for applied methods courses across various disciplines that involve geographic data, such as human and physical geography, geographic information science, ecology, public health, crime, and economics. 

Introduction to Geographic Data and R.- Descriptive Analysis of Geographic Data.- Correlation Analysis.- Linear Regression Analysis.- Geographically Weighted Regression Analysis.- Time Series Analysis.- Cluster Analysis.- Principal Component Analysis (PCA).- Markov Chain Analysis.- Geographic Network Analysis.- Spatial Interpolation.

He Xindong, Associate Professor at the College of Geography and Planning, Chengdu University of Technology in China, has dedicated the past decade to teaching quantitative geography and GIS. His research expertise encompasses land use and change simulation analysis, applied spatial statistics, and spatial analysis in the realms of regional sustainability, spatial planning, and regional development. Over the last ten years, his focus has primarily been on geographic data and geocomputing in public policy- making support.