Muutke küpsiste eelistusi

E-raamat: Geomechanics of Marine Anchors

(Texas A&M University, College Station, USA)
  • Formaat: 390 pages
  • Ilmumisaeg: 18-Sep-2017
  • Kirjastus: CRC Press Inc
  • Keel: eng
  • ISBN-13: 9781351237352
  • Formaat - EPUB+DRM
  • Hind: 59,79 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 390 pages
  • Ilmumisaeg: 18-Sep-2017
  • Kirjastus: CRC Press Inc
  • Keel: eng
  • ISBN-13: 9781351237352

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book provides a comprehensive guide for the analysis and design of anchor systems used for mooring offshore floating structures. Much of the experience is based on applications toward the offshore oil and gas industry, but the substantial potential for offshore renewable energy systems is addressed. The major types of anchors are described with respect to their basic design concept, advantages and limitations, appropriate framework for analysis, and observed performance. This book addresses all aspects of anchor behaviour related to anchor design including the installation performance, load capacity, deformation, and structural integrity of the anchor itself. Coverage is also provided of appurtenant components of anchor systems, in particular of anchor line/chain mechanics in the soil and water columns. Much of the material presented represents relatively new developments, including several new anchors which have been developed within the last decade, so the book will provide a useful compendium of information is largely scattered in journals and conference proceedings.

This book is intended for engineers engaged in offshore geotechnics and marine engineers involved in mooring system and floating structure design. While the analytical methods presented in this text have a strong theoretical basis, the emphasis is on simplified computational formats accessible to design engineers.

Arvustused

"This book comprehensively addresses marine anchor design and the governing, underlying soil mechanics. It should be invaluable to geotechnical practitioners in the floating oil and gas and emerging floating offshore wind sectors alike."

-- Brian Mackenzie, Fugro

Preface xiii
Author xv
1 Introduction
1(38)
1.1 Floating and compliant structures
2(4)
1.1.1 Semisubmersible
2(1)
1.1.2 Tension leg platform
3(1)
1.1.3 Guyed tower
4(1)
1.1.4 Spar
4(1)
1.1.5 Arrays of floating units
4(2)
1.2 Anchor types
6(12)
1.2.1 Suction caissons
7(1)
1.2.2 Piles
8(2)
1.2.3 Drag embedded anchors
10(2)
1.2.4 Suction embedded plate anchors
12(1)
1.2.5 Dynamically installed piles
13(1)
1.2.6 Dynamically installed plate anchors
14(1)
1.2.7 Other direct embedment plate anchors
15(2)
1.2.8 Dead weight anchors
17(1)
1.3 Mechanisms of resistance
18(6)
1.3.1 Soil shearing resistance
18(2)
1.3.2 Gravity
20(2)
1.3.3 Structural resistance
22(1)
1.3.4 Inertia
22(2)
1.4 Loading conditions
24(4)
1.4.1 Sustained loading
24(1)
1.4.2 Cyclic loading
25(1)
1.4.3 Eccentric loading
26(1)
1.4.4 Out-of-plane loading
27(1)
1.5 Anchor performance
28(6)
1.5.1 Installation and load capacity characteristics
28(3)
1.5.2 Efficiency
31(2)
1.5.3 Maintaining embedment
33(1)
1.6 Industry guidelines
34(5)
References
35(4)
2 Soil behavior
39(54)
2.1 Undrained behavior
39(25)
2.1.1 Consolidation stress state
40(1)
2.1.2 Preconsolidation stress
41(1)
2.1.3 Coefficient of earth pressure at rest
42(2)
2.1.4 Advanced laboratory strength tests
44(1)
2.1.5 Normalized behavior
45(2)
2.1.6 Anisotropy
47(3)
2.1.7 Influence of overconsolidation
50(1)
2.1.8 General conditions of consolidation
50(1)
2.1.9 Strain rate effects
51(2)
2.1.10 Remolded strength
53(1)
2.1.11 Thixotropy
53(1)
2.1.12 Sample disturbance
54(3)
2.1.13 Sample reconsolidation
57(1)
2.1.14 In situ tests
58(6)
2.1.15 Undrained stiffness
64(1)
2.2 Consolidation
64(8)
2.2.1 Primary consolidation deformations
65(2)
2.2.2 Secondary compression
67(2)
2.2.3 Coefficient of consolidation and permeability
69(2)
2.2.4 In situ tests
71(1)
2.3 Sand behavior
72(10)
2.3.1 Drained stress-strain-strength behavior
72(2)
2.3.2 Correlations to density and stress level
74(1)
2.3.3 Dilatancy
75(1)
2.3.4 Correlations to CPTU tip resistance
76(2)
2.3.5 Permeability
78(4)
2.4 Cyclic behavior
82(11)
References
87(6)
3 Analytical methods
93(42)
3.1 Plasticity theory
94(7)
3.1.1 The yield criterion
94(2)
3.1.2 The flow rule and internal energy dissipation
96(4)
3.1.3 Generalized stresses and strains
100(1)
3.2 Plastic limit analysis
101(5)
3.2.1 Lower and upper bound theorems
101(1)
3.2.2 Virtual work analysis
101(3)
3.2.3 Method of characteristics
104(2)
3.3 Soil constitutive behavior
106(5)
3.3.1 Linearly elastic--perfectly plastic
107(1)
3.3.2 Modified Camclay
108(1)
3.3.3 Advanced elasto-plastic models
109(2)
3.4 Cavity expansion methods
111(8)
3.4.1 Cylindrical cavity expansion
112(2)
3.4.2 The strain path method
114(4)
3.4.3 Installation disturbance
118(1)
3.5 Finite element methods
119(16)
3.5.1 Overview
120(4)
3.5.2 Coupled poro-elastic analysis
124(2)
3.5.3 Uncoupled consolidation
126(2)
3.5.4 Collapse loads
128(2)
3.5.5 Optimization methods
130(2)
References
132(3)
4 Fundamental studies
135(26)
4.1 Plate anchors
135(15)
4.1.1 Strip anchors
136(2)
4.1.2 Circular disks
138(1)
4.1.3 Eccentric normal loading on rectangular plates
139(2)
4.1.4 Shear-torsion on plates
141(4)
4.1.5 General combined loading
145(1)
4.1.6 Free surface effects
145(2)
4.1.7 Inclined shallow anchors
147(3)
4.2 Cylindrical anchors
150(11)
4.2.1 Lateral loading
150(3)
4.2.2 Axial loading
153(1)
4.2.3 Free surface effects for lateral loading
154(5)
References
159(2)
5 Anchor line mechanics
161(14)
5.1 Soil resistance on anchor line
161(2)
5.1.1 Slack line on seabed
161(1)
5.1.2 Embedded line or chain
162(1)
5.2 Anchor line tension in soil column
163(2)
5.3 Anchor line configuration in soil
165(2)
5.4 Coupling to anchor line in water column
167(2)
5.5 Modification for composite mooring lines
169(3)
5.6 Interaction with a stationary anchor
172(3)
References
173(2)
6 Caisson and pile installation and setup
175(38)
6.1 Suction installation in clay
175(4)
6.1.1 Required underpressure
175(2)
6.1.2 Plug stability
177(1)
6.1.3 Plug heave
178(1)
6.1.4 Practical considerations
179(1)
6.2 Suction installation in sand
179(8)
6.2.1 Soil resistance for no seepage flow
180(1)
6.2.2 Pore water flow
181(2)
6.2.3 Estimating soil disturbance effects
183(1)
6.2.4 Side resistance and maximum penetration depth
184(1)
6.2.5 Required underpressure
184(2)
6.2.6 Practical considerations
186(1)
6.3 Dynamic installation
187(5)
6.3.1 Limit equilibrium
188(2)
6.3.2 Analytical solution
190(2)
6.3.3 Total energy method
192(1)
6.4 Driving installation
192(9)
6.4.1 Elastic wave propagation
194(4)
6.4.2 Wave equation analysis of piles
198(3)
6.5 Setup
201(7)
6.5.1 Predictive framework
201(2)
6.5.2 Suction caissons
203(3)
6.5.3 Dynamically installed piles
206(1)
6.5.4 Driven piles
206(2)
6.6 Structural integrity
208(5)
References
210(3)
7 Caisson and pile ultimate capacity
213(30)
7.1 Axial capacity in clay
213(4)
7.1.1 Driven piles
213(2)
7.1.2 Suction caissons
215(2)
7.1.3 Jetted piles
217(1)
7.2 Axial capacity in sands
217(4)
7.2.1 β-method
218(1)
7.2.2 CPT methods
218(3)
7.3 Horizontal capacity of piles in clay
221(8)
7.3.1 Horizontal-moment interaction: Lf/D > 3
221(3)
7.3.2 Optimal load attachment depth
224(1)
7.3.3 Yield locus representation
225(2)
7.3.4 Model validation
227(1)
7.3.5 Effects of anisotropy
227(2)
7.4 Combined loading in clay
229(7)
7.4.1 Side axial-lateral interaction
229(4)
7.4.2 End axial-moment interaction
233(1)
7.4.3 Virtual work solution
234(1)
7.4.4 Model validation
235(1)
7.5 Long term loading
236(1)
7.6 Laterally load piles in sands
237(2)
7.7 Torsion
239(4)
References
240(3)
8 Elastic effects and soil-pile interaction
243(38)
8.1 Axial load transfer
244(4)
8.1.1 Side resistance
244(2)
8.1.2 Tip resistance
246(2)
8.2 Lateral soil resistance
248(4)
8.2.1 Experimental measurement
249(2)
8.2.2 Application to design
251(1)
8.3 P--y curves for monotonic loading
252(6)
8.3.1 Soft clay
252(3)
8.3.2 Stiff clays
255(2)
8.3.3 Sand
257(1)
8.4 Secant stiffness
258(2)
8.5 True nonlinear behavior
260(5)
8.5.1 Phenomenological description
261(2)
8.5.2 Incremental plasticity models
263(2)
8.6 Soil-pile interaction
265(8)
8.6.1 Axial
265(3)
8.6.2 Lateral
268(4)
8.6.3 Beam-column effects
272(1)
8.7 Short piles and caissons
273(8)
8.7.1 Circumferential distribution of soil resistance
275(2)
8.7.2 Elastic effects and ovalization
277(2)
References
279(2)
9 Drag embedded anchors
281(52)
9.1 Basic description of DEAs
281(3)
9.2 Empirical methods
284(2)
9.2.1 Design guide of NCEL
284(1)
9.2.2 Manufacturer guidelines
285(1)
9.3 Undrained behavior of an embedded plate
286(12)
9.3.1 Load capacity
289(4)
9.3.2 Kinematic response
293(2)
9.3.3 Shank resistance
295(3)
9.4 Embedment trajectory
298(4)
9.4.1 Anchor set
298(2)
9.4.2 Post-set trajectory
300(2)
9.5 Factors affecting DEA performance
302(3)
9.5.1 Anchor properties
302(1)
9.5.2 Soil properties
303(1)
9.5.3 Mooring line properties
303(2)
9.6 Calibration to case history data
305(8)
9.6.1 Joint industry project Gulf of Mexico
307(1)
9.6.2 South Timbalier Block 295 Gulf of Mexico
308(3)
9.6.3 Liuhua 11-1 field
311(1)
9.6.4 Offshore Brazil P-13
311(2)
9.6.5 Offshore Brazil Campos Basin P-27
313(1)
9.7 Vertically loaded anchors
313(5)
9.7.1 Shank release
315(1)
9.7.2 VLA trajectory simulation
316(2)
9.8 Stratified soil profiles
318(2)
9.9 Out-of-plane loading
320(6)
9.9.1 Analysis of thin shank anchors
321(2)
9.9.2 Experimental data
323(3)
9.10 DEAs in sand
326(2)
9.11 Additional considerations
328(5)
References
330(3)
10 Direct embedment plate anchors
333(34)
10.1 Suction embedded plate anchors
333(10)
10.1.1 System of forces on anchor
334(1)
10.1.2 Anchor kinematics
335(2)
10.1.3 Interaction with mooring line
337(1)
10.1.4 Example trajectory calculations
338(2)
10.1.5 Comparison to experimental data
340(1)
10.1.6 Parametric studies
341(1)
10.1.7 Performance of keying flap
342(1)
10.2 Pile driven plate anchors
343(8)
10.2.1 Load capacity of strip anchors in sand
345(2)
10.2.2 Finite length effects
347(2)
10.2.3 Effect of anchor orientation
349(1)
10.2.4 Chain resistance
350(1)
10.2.5 Keying loss of embedment
350(1)
10.3 Dynamically embedded plate anchors
351(7)
10.3.1 Dynamic embedment
353(2)
10.3.2 Keying loss of embedment
355(2)
10.3.3 Load capacity
357(1)
10.4 Helical anchors
358(9)
10.4.1 Axial capacity in clay
359(3)
10.4.2 Axial capacity in sand
362(1)
References
363(4)
Index 367
Charles Aubeny is a professor at Texas A&M University where he is coordinator of the geotechnical group. He is an expert in offshore foundations and serves on the Offshore Site Investigation and Geotechnics Committee for the Houston Branch of the Society of Underwater Technology. He is the recipient of the ASCE Thomas A. Middlebrooks Award.