Preface |
|
xi | |
Chapter 1 The Power of Grids-Closest Pair and Smallest Enclosing Disk |
|
1 | (12) |
|
|
1 | (1) |
|
|
1 | (4) |
|
1.3 A slow 2-approximation algorithm for the k-enclosing disk |
|
|
5 | (1) |
|
1.4 A linear time 2-approximation for the k-enclosing disk |
|
|
6 | (4) |
|
1.5 Bibliographical notes |
|
|
10 | (1) |
|
|
11 | (2) |
Chapter 2 Quadtrees–Hierarchical Grids |
|
13 | (16) |
|
2.1 Quadtrees–a simple point-location data-structure |
|
|
13 | (2) |
|
|
15 | (5) |
|
|
20 | (4) |
|
2.4 Bibliographical notes |
|
|
24 | (2) |
|
|
26 | (3) |
Chapter 3 Well-Separated Pair Decomposition |
|
29 | (18) |
|
3.1 Well-separated pair decomposition (WSPD) |
|
|
29 | (4) |
|
|
33 | (7) |
|
3.3 Semi-separated pair decomposition (SSPD) |
|
|
40 | (3) |
|
3.4 Bibliographical notes |
|
|
43 | (1) |
|
|
44 | (3) |
Chapter 4 Clustering-Definitions and Basic Algorithms |
|
47 | (14) |
|
|
47 | (2) |
|
4.2 On k-center clustering |
|
|
49 | (2) |
|
4.3 On k-median clustering |
|
|
51 | (6) |
|
4.4 On k-means clustering |
|
|
57 | (1) |
|
4.5 Bibliographical notes |
|
|
57 | (2) |
|
|
59 | (2) |
Chapter 5 On Complexity, Sampling, and s-Nets and s-Samples |
|
61 | (26) |
|
|
61 | (3) |
|
5.2 Shattering dimension and the dual shattering dimension |
|
|
64 | (6) |
|
5.3 On s-nets and e-sampling |
|
|
70 | (5) |
|
|
75 | (5) |
|
5.5 Proof of the e-net theorem |
|
|
80 | (2) |
|
5.6 A better bound on the growth function |
|
|
82 | (1) |
|
5.7 Bibliographical notes |
|
|
83 | (1) |
|
|
84 | (3) |
Chapter 6 Approximation via Reweighting |
|
87 | (16) |
|
|
87 | (1) |
|
6.2 Computing a spanning tree with low crossing number |
|
|
88 | (6) |
|
|
94 | (4) |
|
6.4 Geometric set cover via linear programming |
|
|
98 | (2) |
|
6.5 Bibliographical notes |
|
|
100 | (1) |
|
|
100 | (3) |
Chapter 7 Yet Even More on Sampling |
|
103 | (18) |
|
|
103 | (3) |
|
|
106 | (3) |
|
|
109 | (10) |
|
7.4 Bibliographical notes |
|
|
119 | (1) |
|
|
119 | (2) |
Chapter 8 Sampling and the Moments Technique |
|
121 | (14) |
|
8.1 Vertical decomposition |
|
|
121 | (4) |
|
|
125 | (3) |
|
|
128 | (2) |
|
8.4 Bounds on the probability of a region to be created |
|
|
130 | (1) |
|
8.5 Bibliographical notes |
|
|
131 | (2) |
|
|
133 | (2) |
Chapter 9 Depth Estimation via Sampling |
|
135 | (10) |
|
|
135 | (1) |
|
|
136 | (4) |
|
9.3 A general bound for the at most k-weight |
|
|
140 | (2) |
|
9.4 Bibliographical notes |
|
|
142 | (1) |
|
|
143 | (2) |
Chapter 10 Approximating the Depth via Sampling and Emptiness |
|
145 | (6) |
|
10.1 From emptiness to approximate range counting |
|
|
145 | (3) |
|
10.2 Application: Halfplane and halfspace range counting |
|
|
148 | (1) |
|
10.3 Relative approximation via sampling |
|
|
149 | (1) |
|
10.4 Bibliographical notes |
|
|
150 | (1) |
|
|
150 | (1) |
Chapter 11 Random Partition via Shifting |
|
151 | (12) |
|
11.1 Partition via shifting |
|
|
151 | (4) |
|
11.2 Hierarchical representation of a point set |
|
|
155 | (3) |
|
11.3 Low quality ANN search |
|
|
158 | (2) |
|
11.4 Bibliographical notes |
|
|
160 | (1) |
|
|
160 | (3) |
Chapter 12 Good Triangulations and Meshing |
|
163 | (14) |
|
12.1 Introduction-good triangulations |
|
|
163 | (1) |
|
12.2 Triangulations and fat triangulations |
|
|
164 | (4) |
|
|
168 | (7) |
|
|
175 | (1) |
|
12.5 Bibliographical notes |
|
|
176 | (1) |
Chapter 13 Approximating the Euclidean Traveling Salesman Problem (TSP) |
|
177 | (14) |
|
13.1 The TSP problem-introduction |
|
|
177 | (1) |
|
13.2 When the optimal solution is friendly |
|
|
178 | (4) |
|
13.3 TSP approximation via portals and sliding quadtrees |
|
|
182 | (8) |
|
13.4 Bibliographical notes |
|
|
190 | (1) |
|
|
190 | (1) |
Chapter 14 Approximating the Euclidean TSP Using Bridges |
|
191 | (12) |
|
|
191 | (1) |
|
|
192 | (6) |
|
14.3 The dynamic programming |
|
|
198 | (4) |
|
|
202 | (1) |
|
14.5 Bibliographical notes |
|
|
202 | (1) |
Chapter 15 Linear Programming in Low Dimensions |
|
203 | (14) |
|
|
203 | (2) |
|
15.2 Low-dimensional linear programming |
|
|
205 | (3) |
|
15.3 Linear programming with violations |
|
|
208 | (1) |
|
15.4 Approximate linear programming with violations |
|
|
209 | (1) |
|
|
210 | (3) |
|
15.6 Bibliographical notes |
|
|
213 | (2) |
|
|
215 | (2) |
Chapter 16 Polyhedrons, Polytopes, and Linear Programming |
|
217 | (16) |
|
|
217 | (2) |
|
16.2 Properties of polyhedrons |
|
|
219 | (8) |
|
16.3 Vertices of a polytope |
|
|
227 | (3) |
|
16.4 Linear programming correctness |
|
|
230 | (2) |
|
16.5 Bibliographical notes |
|
|
232 | (1) |
|
|
232 | (1) |
Chapter 17 Approximate Nearest Neighbor Search in Low Dimension |
|
233 | (10) |
|
|
233 | (1) |
|
17.2 The bounded spread case |
|
|
233 | (3) |
|
17.3 ANN-the unbounded general case |
|
|
236 | (2) |
|
17.4 Low quality ANN search via the ring separator tree |
|
|
238 | (2) |
|
17.5 Bibliographical notes |
|
|
240 | (2) |
|
|
242 | (1) |
Chapter 18 Approximate Nearest Neighbor via Point-Location |
|
243 | (14) |
|
18.1 ANN using point-location among balls |
|
|
243 | (7) |
|
18.2 ANN using point-location among approximate balls |
|
|
250 | (2) |
|
18.3 ANN using point-location among balls in low dimensions |
|
|
252 | (1) |
|
18.4 Approximate Voronoi diagrams |
|
|
253 | (2) |
|
18.5 Bibliographical notes |
|
|
255 | (1) |
|
|
256 | (1) |
Chapter 19 Dimension Reduction-The Johnson-Lindenstrauss (JL) Lemma |
|
257 | (12) |
|
19.1 The Brunn-Minkowski inequality |
|
|
257 | (3) |
|
19.2 Measure concentration on the sphere |
|
|
260 | (3) |
|
19.3 Concentration of Lipschitz functions |
|
|
263 | (1) |
|
19.4 The Johnson-Lindenstrauss lemma |
|
|
263 | (3) |
|
19.5 Bibliographical notes |
|
|
266 | (1) |
|
|
267 | (2) |
Chapter 20 Approximate Nearest Neighbor (ANN) Search in High Dimensions |
|
269 | (10) |
|
20.1 ANN on the hypercube |
|
|
269 | (5) |
|
20.2 LSH and ANN in Euclidean space |
|
|
274 | (2) |
|
20.3 Bibliographical notes |
|
|
276 | (3) |
Chapter 21 Approximating a Convex Body by an Ellipsoid |
|
279 | (4) |
|
|
279 | (3) |
|
21.2 Bibliographical notes |
|
|
282 | (1) |
Chapter 22 Approximating the Minimum Volume Bounding Box of a Point Set |
|
283 | (8) |
|
|
283 | (1) |
|
22.2 Approximating the minimum volume bounding box |
|
|
284 | (2) |
|
22.3 Exact algorithm for the minimum volume bounding box |
|
|
286 | (2) |
|
22.4 Approximating the minimum volume bounding box in three dimensions |
|
|
288 | (1) |
|
22.5 Bibliographical notes |
|
|
289 | (1) |
|
|
289 | (2) |
Chapter 23 Coresets |
|
291 | (16) |
|
23.1 Coreset for directional width |
|
|
291 | (6) |
|
23.2 Approximating the extent of lines and other creatures |
|
|
297 | (4) |
|
23.3 Extent of polynomials |
|
|
301 | (1) |
|
23.4 Roots of polynomials |
|
|
302 | (4) |
|
23.5 Bibliographical notes |
|
|
306 | (1) |
|
|
306 | (1) |
Chapter 24 Approximation Using Shell Sets |
|
307 | (8) |
|
24.1 Covering problems, expansion, and shell sets |
|
|
307 | (3) |
|
24.2 Covering by cylinders |
|
|
310 | (3) |
|
24.3 Bibliographical notes |
|
|
313 | (1) |
|
|
313 | (2) |
Chapter 25 Duality |
|
315 | (8) |
|
25.1 Duality of lines and points |
|
|
315 | (3) |
|
|
318 | (1) |
|
25.3 Bibliographical notes |
|
|
319 | (2) |
|
|
321 | (2) |
Chapter 26 Finite Metric Spaces and Partitions |
|
323 | (12) |
|
26.1 Finite metric spaces |
|
|
323 | (2) |
|
|
325 | (2) |
|
26.3 Probabilistic embedding into trees |
|
|
327 | (2) |
|
26.4 Embedding any metric space into Euclidean space |
|
|
329 | (3) |
|
26.5 Bibliographical notes |
|
|
332 | (1) |
|
|
333 | (2) |
Chapter 27 Some Probability and Tail Inequalities |
|
335 | (12) |
|
27.1 Some probability background |
|
|
335 | (3) |
|
|
338 | (4) |
|
27.3 Hoeffding's inequality |
|
|
342 | (2) |
|
27.4 Bibliographical notes |
|
|
344 | (1) |
|
|
344 | (3) |
Chapter 28 Miscellaneous Prerequisite |
|
347 | (2) |
|
28.1 Geometry and linear algebra |
|
|
347 | (1) |
|
|
348 | (1) |
Bibliography |
|
349 | (8) |
Index |
|
357 | |