Muutke küpsiste eelistusi

E-raamat: Geometric Computation: Foundations for Design

, (Berkely University of California, USA)
  • Formaat: 454 pages
  • Ilmumisaeg: 15-Feb-2018
  • Kirjastus: Routledge
  • Keel: eng
  • ISBN-13: 9781317659075
  • Formaat - EPUB+DRM
  • Hind: 64,99 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 454 pages
  • Ilmumisaeg: 15-Feb-2018
  • Kirjastus: Routledge
  • Keel: eng
  • ISBN-13: 9781317659075

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Geometric Computation: foundations for design describes the mathematical and computational concepts that are central to the practical application of design computation in a manner tailored to the visual designer. Uniquely pairing key topics in code and geometry, this book develops the two key faculties required by designers that seek to integrate computation into their creative practice: an understanding of the structure of code in object-oriented programming, and a proficiency in the fundamental geometric constructs that underlie much of the computational media in visual design.

Introduction 1(9)
How to Use This Book
6(2)
Summary of Contents
8(2)
Chapter 1.01 Elements of a Computation
10(24)
Syntax, Execution, and Context
11(3)
Code, Notation, and Diagram
14(3)
An Amuse-Bouche
17(17)
E1.01 Mathematical Monsters: Part I
26(2)
E1.02 A Point Attractor
28(6)
Chapter 1.02 Objects, Types, and Expressions
34(36)
Objects and Types
35(4)
The Python Object Model
39(6)
Expressions and Statements
45(9)
E1.03 Mathematical Monsters: Part II
52(2)
Primitive and Structured Data Types
54(7)
Program Structure at Larger Scales
61(9)
Chapter 1.03 Vectors, Points, and Coordinate Systems
70(42)
Vector Representation and Manipulation
72(4)
Vectors in Cartesian Space
76(9)
Vector Length and Direction
85(3)
Dot Product
88(4)
Cross Product
92(8)
E1.04 Polygon Convexity and Concavity
98(2)
Coordinate Systems
100(9)
Alternate Coordinate Geometry
109(3)
Chapter 1.04 Collections and Control Flow
112(58)
An Ontology of Collections
113(6)
Local Structures of Control
119(9)
E1.05 Fractals I - A Space-Filling Curve
126(2)
Sequence Types in Python
128(16)
E1.06 Fractals II - Gosper Islands & Curves
140(4)
Python Dictionaries
144(8)
Multi-Dimensionality
152(6)
Iterative Structures of Control
158(12)
E1.07 Fractals III
166(2)
E1.08 Mathematical Monsters: Part III
168(2)
Chapter 1.05 Functions
170(38)
Elements of a Function
175(15)
E1.09 Convex Hull
188(2)
Abstraction and Discovery
190(8)
E1.10 Differentiated Subdivision
194(4)
Functions and the Python Object Model
198(8)
Recursion
206(2)
Chapter 1.06 Lines and Planes
208(32)
Lines and Planes in Cartesian Space
209(6)
Lines and Planes in Decod.es
215(13)
E1.11 Guilloche
226(2)
Methods of Projection
228(6)
E1.12 Incident Solar Radiation
230(4)
Methods of Comparison
234(6)
Chapter 1.07 Transformations and Intersections
240(40)
Transformation Mathematics
242(14)
Transformations in Code
256(8)
E1.13 Lattice Patterns I - An Arabic Tiling
262(2)
Intersections
264(16)
E1.14 Lattice Patterns II - Ice Ray
274(2)
E1.15 Offset and Straight Skeleton
276(4)
Chapter 1.08 Bureaucratic Types
280(42)
The Raster Family
281(13)
E1.16 Marching Squares
292(2)
Basis Managers
294(3)
Point Managers
297(13)
Polygon Meshes
310(6)
Graph Objects in Decod.es
316(6)
E1.17 Lattice to Cells
320(2)
Chapter 1.09 Curves
322(34)
A Parametric Representation
323(19)
E1.18 A Gallery of Parametric Curves
332(4)
E1.19 Shaping Curves
336(4)
E1.20 Curve Tweening
340(2)
Geometric Properties of Curves
342(7)
Freeform Curves
349(7)
E1.21 deCasteljau's Algorithm
354(2)
Chapter 1.10 Surfaces
356(40)
A Parametric Representation
357(13)
E1.22 Cone Three Ways
368(2)
Classical Surfaces
370(12)
E1.23 Unrolling and Unwrapping
378(4)
Geometric Properties of Surfaces
382(10)
Freeform Surfaces
392(4)
E1.24 Shaping Surfaces
394(2)
Chapter 1.11 The Design of Objects
396(34)
Ad-Hoc Classes
397(5)
The Anatomy of a Class
402(17)
Object-Oriented Design
419(11)
CONCLUSION
430(12)
Acknowledgements
432(2)
Figures
434(5)
References
439(3)
Index 442
Joy Ko is a researcher, innovator, and educator. As a mathematician and specialist in design computation, she believes design has a unique role in guiding society to anticipate changes, critically explore those changes, and show the futures that are possible. Ko believes that solid fundamentals are key to empower, embolden, and facilitate multi-disciplinary application of computation for designers and artists. She teaches at the Rhode Island School of Design, USA.

Kyle Steinfeld is an Assistant Professor of Architecture at the University of California, Berkeley, USA. Through his research and creative work, he seeks to illuminate the dynamic relationship between the creative practice of design and computational design methods, thereby enabling a more inventive, informed, responsive, and responsible practice of architecture. He is the author of a number of works of software design tools, and has published widely on the subject of design and computation.