Muutke küpsiste eelistusi

E-raamat: Geometric Control Theory and Sub-Riemannian Geometry

Edited by , Edited by , Edited by , Edited by , Edited by
  • Formaat: PDF+DRM
  • Sari: Springer INdAM Series 5
  • Ilmumisaeg: 05-Jun-2014
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783319021324
  • Formaat - PDF+DRM
  • Hind: 110,53 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Sari: Springer INdAM Series 5
  • Ilmumisaeg: 05-Jun-2014
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783319021324

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Presenting state-of-the-art research in a highly applicable field, this collection features papers by leading scientists combining these two methodologies, in honor of the groundbreaking work of Andrei Agrachev. It includes a chapter on open problems.



Honoring Andrei Agrachev's 60th birthday, this volume presents recent advances in the interaction between Geometric Control Theory and sub-Riemannian geometry. On the one hand, Geometric Control Theory used the differential geometric and Lie algebraic language for studying controllability, motion planning, stabilizability and optimality for control systems. The geometric approach turned out to be fruitful in applications to robotics, vision modeling, mathematical physics etc. On the other hand, Riemannian geometry and its generalizations, such as sub-Riemannian, Finslerian geometry etc., have been actively adopting methods developed in the scope of geometric control. Application of these methods has led to important results regarding geometry of sub-Riemannian spaces, regularity of sub-Riemannian distances, properties of the group of diffeomorphisms of sub-Riemannian manifolds, local geometry and equivalence of distributions and sub-Riemannian structures, regularity of the Hausdorff volume, etc.
Some open problems
1(14)
Andrei A. Agrachev
Geometry of Maslov cycles
15(22)
Davide Barilari
Antonio Lerario
How to Run a Centipede: a Topological Perspective
37(16)
Yuliy Baryshnikov
Boris Shapiro
Geometric and numerical techniques to compute conjugate and cut loci on Riemannian surfaces
53(20)
Bernard Bonnard
Olivier Cots
Lionel Jassionnesse
On the injectivity and nonfocal domains of the ellipsoid of revolution
73(14)
Jean-Baptiste Caillau
Clement Royer
Null controllability in large time for the parabolic Grushin operator with singular potential
87(16)
Piermarco Cannarsa
Roberto Guglielmi
The rolling problem: overview and challenges
103(20)
Yacine Chitour
Mauricio Godoy Molina
Petri Kokkonen
Optimal stationary exploitation of size-structured population with intra-specific competition
123(10)
Alexey A. Davydov
Anton S. Platov
On geometry of affine control systems with one input
133(20)
Boris Doubrov
Igor Zelenko
Remarks on Lipschitz domains in Carnot groups
153(14)
Bruno Franchi
Valentina Penso
Raul Serapioni
Differential-geometric and invariance properties of the equations of Maximum Principle (MP)
167(10)
Revaz V. Gamkrelidze
Curvature-dimension inequalities and Li-Yau inequalities in sub-Riemannian spaces
177(24)
Nicola Garofalo
Hausdorff measures and dimensions in non equiregular sub-Riemannian manifolds
201(18)
Roberta Ghezzi
Frederic Jean
The Delauney-Dubins Problem
219(22)
Velimir Jurdjevic
On Local Approximation Theorem on Equiregular Carnot-Caratheodory Spaces
241(22)
Maria Karmanova
Sergey Vodopyanov
On curvature-type invariants for natural mechanical systems on sub-Riemannian structures associated with a principle G-bundle
263(24)
Chengbo Li
On the Alexandrov Topology of sub-Lorentzian Manifolds
287(26)
Irina Markina
Stephan Wojtowytsch
The regularity problem for sub-Riemannian geodesies
313(20)
Roberto Monti
A case study in strong optimality and structural stability of bang-singular extremals
333(18)
Laura Poggiolini
Gianna Stefani
Approximate controllability of the viscous Burgers equation on the real line
351(20)
Armen Shirikyan
Homogeneous affine line fields and affine lines in Lie algebras
371
Michail Zhitomirskii
Prof. Gianna Stefani: From 1997 is Full Professor at University of Florence, Italy.

Prof. Ugo Boscain: Directeur de recherche CNRS (DR2) at the Center of Applied Mathematics and Probability (CMAP) of Ecole Polytechnique; Professeur charge de course in numerical analysis and optimization at Ecole Polytechnique (department of applied mathematics); Deputy team leader of the equipe-INRIA GECO Inria Saclay.

Prof. Jean-Paul Gauthier: Experience of JP Gauthier In Scientific Research (January 2011), Including; Research Team Management and Industrial Collaborations; JP Gauthier has scientific experience in several areas (pluridisciplinary); Honorary Member of Institut Universitaire de France (Promotion 1992).

Prof. Andrey Sarychev: Full Professor (Professore Ordinario di I Fascia) at the Department of Mathematics and Informatics U.Dini (DiMaI), University of Florence, Italy, since January 2013. Prof. Mario Sigalotti: Chargé de recherche de première classe (CR1) - Établissement : INRIA Saclay Île-de-France - Équipe-projet : GECO.