Muutke küpsiste eelistusi

E-raamat: Geometric Function Theory: A Second Course in Complex Analysis

  • Formaat - PDF+DRM
  • Hind: 61,74 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This textbook provides a second course in complex analysis with a focus on geometric aspects. It covers topics such as the spherical geometry of the extended complex plane, the hyperbolic geometry of the Poincaré disk, conformal mappings, the Riemann Mapping Theorem and uniformisation of planar domains, characterisations of simply connected domains, the convergence of Riemann maps in terms of Carathéodory convergence of the image domains, normal families and Picard's theorems on value distribution, as well as the fundamentals of univalent function theory. Throughout the text, the synergy between analysis and geometry is emphasised, with proofs chosen for their directness.





The textbook is self-contained, requiring only a first undergraduate course in complex analysis. The minimal topology needed is introduced as necessary. While primarily aimed at upper-level undergraduates, the book also serves as a concise reference for graduates working in complex analysis.
1 Introduction.- 2 The Complex Plane - Preparatory Topics.- 3 The
Riemann Sphere.- 4 The Hyperbolic Disk.- 5 Normal Families and Value
Distribution.- 6 Simply Connected Domains and the Riemann Mapping Theorem.- 7
Runge's Theorem and Further Characterisations of Simply Connected Domains.- 8
Univalent Functions - the Basics.- 9 Carathéodory Convergence of Domains and
Hyperbolic Geodesics.- 10 Uniformisation of Planar Domains.
Tom Carroll is Senior Lecturer in Mathematics at University College Cork. He is the author of over 40 research papers, primarily in the general areas of functions of a complex variable, probability theory and stochastic processes, and partial differential equations. Tom has served as President of the Irish Mathematical Society (2021-2022) and has recently been appointed editor of the Society's Bulletin.