Preface |
|
xi | |
|
|
1 | (13) |
|
1.1 What is signal and image analysis? |
|
|
1 | (1) |
|
1.2 Why geometric methods? |
|
|
1 | (3) |
|
|
4 | (10) |
|
1.3.1 Image edge detection |
|
|
4 | (2) |
|
|
6 | (1) |
|
1.3.3 Diffusion tensor imaging |
|
|
6 | (1) |
|
|
7 | (1) |
|
1.3.5 Surface compression |
|
|
8 | (1) |
|
1.3.6 Shape skeletonization |
|
|
9 | (1) |
|
|
10 | (3) |
|
1.3.8 Networked sensors and data |
|
|
13 | (1) |
|
2 Fundamentals of group theory |
|
|
14 | (39) |
|
2.1 Elements of group theory |
|
|
15 | (14) |
|
2.1.1 Groups: definitions and examples |
|
|
15 | (7) |
|
2.1.2 Homomorphisms of groups |
|
|
22 | (4) |
|
|
26 | (1) |
|
|
26 | (3) |
|
|
29 | (1) |
|
2.2 Topological and symmetry groups |
|
|
29 | (7) |
|
|
30 | (2) |
|
|
32 | (1) |
|
2.2.3 Isometry between metric spaces |
|
|
33 | (2) |
|
|
35 | (1) |
|
|
36 | (7) |
|
2.3.1 Introduction to graph theory |
|
|
36 | (6) |
|
2.3.2 Geometric groups and Cayley graphs |
|
|
42 | (1) |
|
2.4 Symmetry discovery of nonrigid 3D shapes |
|
|
43 | (10) |
|
2.4.1 Skeleton path acquisition |
|
|
44 | (4) |
|
|
48 | (1) |
|
|
49 | (1) |
|
2.4.4 Symmetric components discovery |
|
|
50 | (3) |
|
|
53 | (67) |
|
|
53 | (10) |
|
3.1.1 Vector spaces over a field |
|
|
54 | (5) |
|
3.1.2 Cartesian product of spaces |
|
|
59 | (1) |
|
3.1.3 Subspaces of vector spaces |
|
|
59 | (1) |
|
3.1.4 Linear independence and bases |
|
|
60 | (2) |
|
|
62 | (1) |
|
|
62 | (1) |
|
|
63 | (14) |
|
|
68 | (1) |
|
|
69 | (2) |
|
3.2.3 Matrix of a linear operator |
|
|
71 | (1) |
|
3.2.4 Eigenvalues and eigenvectors of linear operators |
|
|
72 | (1) |
|
3.2.5 Eigendecomposition of matrices |
|
|
73 | (3) |
|
3.2.6 Linear functionals and dual space |
|
|
76 | (1) |
|
|
77 | (25) |
|
3.3.1 Dot and cross products |
|
|
77 | (1) |
|
|
78 | (5) |
|
|
83 | (1) |
|
3.3.4 Orthogonal complements |
|
|
84 | (1) |
|
|
85 | (2) |
|
3.3.6 Normed vector spaces |
|
|
87 | (3) |
|
3.3.7 From vector spaces to Hilbert spaces |
|
|
90 | (1) |
|
|
91 | (1) |
|
|
92 | (1) |
|
3.3.10 Unitary and orthogonal operators |
|
|
93 | (3) |
|
3.3.11 Self-adjoint operators |
|
|
96 | (2) |
|
|
98 | (1) |
|
3.3.13 Positive definite operators |
|
|
99 | (3) |
|
3.4 Topological vector spaces |
|
|
102 | (1) |
|
3.5 Generalized eigendecomposition of matrices |
|
|
103 | (1) |
|
3.6 Singular value decomposition |
|
|
103 | (5) |
|
3.6.1 Geometric interpretation of SVD |
|
|
104 | (2) |
|
3.6.2 Low-rank approximation |
|
|
106 | (2) |
|
3.7 Principal component analysis |
|
|
108 | (12) |
|
|
111 | (3) |
|
|
114 | (2) |
|
|
116 | (1) |
|
|
117 | (3) |
|
4 Differential geometry of curves and surfaces |
|
|
120 | (48) |
|
4.1 Local theory of curves |
|
|
121 | (13) |
|
4.1.1 Curves and their tangents |
|
|
121 | (3) |
|
|
124 | (1) |
|
|
125 | (1) |
|
4.1.4 Curvature of plane curves |
|
|
126 | (2) |
|
4.1.5 Curvature and torsion of space curves |
|
|
128 | (4) |
|
4.1.6 Fundamental theorem of curves |
|
|
132 | (1) |
|
4.1.7 Implicit representation of curves in the plane |
|
|
133 | (1) |
|
4.2 Local theory of surfaces |
|
|
134 | (24) |
|
4.2.1 Parametric representation of surfaces |
|
|
134 | (3) |
|
|
137 | (2) |
|
4.2.3 Vector fields on surfaces |
|
|
139 | (1) |
|
|
140 | (1) |
|
4.2.5 First fundamental form |
|
|
140 | (3) |
|
|
143 | (1) |
|
|
144 | (4) |
|
|
148 | (1) |
|
4.2.9 Second fundamental form |
|
|
148 | (2) |
|
4.2.10 Gaussian, mean, and principal curvatures |
|
|
150 | (7) |
|
|
157 | (1) |
|
4.3 Image segmentation using curve evolution |
|
|
158 | (10) |
|
5 Geometric and differential topology of manifolds |
|
|
168 | (70) |
|
|
169 | (10) |
|
5.1.1 Topological manifolds |
|
|
169 | (1) |
|
5.1.2 Manifold with boundary |
|
|
170 | (1) |
|
5.1.3 Smooth manifolds and smooth maps |
|
|
171 | (3) |
|
|
174 | (1) |
|
|
175 | (1) |
|
5.1.6 Pushforward and pullback |
|
|
175 | (2) |
|
5.1.7 Whitney embedding theorem |
|
|
177 | (1) |
|
5.1.8 Connections on manifolds |
|
|
178 | (1) |
|
|
179 | (1) |
|
|
179 | (5) |
|
|
181 | (1) |
|
5.2.2 Riemannian manifold |
|
|
182 | (1) |
|
|
182 | (1) |
|
5.2.4 Laplace--Beltrami operator |
|
|
182 | (1) |
|
5.2.5 Isometric manifolds |
|
|
183 | (1) |
|
|
184 | (19) |
|
5.3.1 Triangular mesh representation |
|
|
185 | (1) |
|
5.3.2 Topological invariants |
|
|
186 | (2) |
|
5.3.3 Introduction to spectral graph theory |
|
|
188 | (11) |
|
5.3.4 Introduction to spectral geometry |
|
|
199 | (4) |
|
5.4 Introduction to Morse theory |
|
|
203 | (6) |
|
|
203 | (1) |
|
5.4.2 Level sets around Morse points |
|
|
204 | (1) |
|
5.4.3 Handle decomposition |
|
|
205 | (1) |
|
|
205 | (1) |
|
|
206 | (3) |
|
|
209 | (29) |
|
|
209 | (3) |
|
5.5.2 Morse-theoretic analysis of 3D shapes |
|
|
212 | (6) |
|
5.5.3 Curve evolution on a manifold |
|
|
218 | (2) |
|
5.5.4 Spectral graph wavelets for deformable 3D shape retrieval |
|
|
220 | (18) |
|
6 Computational algebraic topology |
|
|
238 | (36) |
|
6.1 Topological characterization by function evaluation |
|
|
239 | (4) |
|
6.1.1 Morse function: a topological perspective |
|
|
240 | (1) |
|
6.1.2 Almost all images are Morse functions |
|
|
241 | (1) |
|
6.1.3 Topological equivalence of images |
|
|
242 | (1) |
|
6.2 Discrete Morse theory: introduction |
|
|
243 | (6) |
|
6.2.1 A simplex-based space |
|
|
243 | (3) |
|
|
246 | (1) |
|
6.2.3 A gradient vector field on a simplicial complex |
|
|
247 | (1) |
|
6.2.4 Optimizing a discrete Morse function |
|
|
248 | (1) |
|
6.3 An algebraic approach to topological analysis |
|
|
249 | (10) |
|
6.3.1 Mapping-based equivalence of spaces |
|
|
250 | (1) |
|
6.3.2 Simplicial homology |
|
|
251 | (5) |
|
|
256 | (2) |
|
6.3.4 Homology-based topology characterization |
|
|
258 | (1) |
|
6.4 Computational aspects of homology |
|
|
259 | (15) |
|
|
260 | (1) |
|
6.4.2 Sensor networks: the coverage problem |
|
|
261 | (3) |
|
|
264 | (5) |
|
|
269 | (5) |
References |
|
274 | (8) |
Index |
|
282 | |