Muutke küpsiste eelistusi

E-raamat: Geometric Modeling and Reasoning of Human-Centered Freeform Products

  • Formaat: PDF+DRM
  • Ilmumisaeg: 11-Aug-2012
  • Kirjastus: Springer London Ltd
  • Keel: eng
  • ISBN-13: 9781447143604
  • Formaat - PDF+DRM
  • Hind: 110,53 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Ilmumisaeg: 11-Aug-2012
  • Kirjastus: Springer London Ltd
  • Keel: eng
  • ISBN-13: 9781447143604

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The recent trend in user-customized product design requires the shape of products to be automatically adjusted according to the human body’s shape, so that people will feel more comfortable when wearing these products. Geometric approaches can be used to design the freeform shape of products worn by people, which can greatly improve the efficiency of design processes in various industries involving customized products (e.g., garment design, toy design, jewel design, shoe design, and design of medical devices, etc.). These products are usually composed of very complex geometric shapes (represented by free-form surfaces), and are not driven by a parameter table but a digital human model with free-form shapes or part of human bodies (e.g., wrist, foot, and head models). Geometric Modeling and Reasoning of Human-Centered Freeform Products introduces the algorithms of human body reconstruction, freeform product modeling, constraining and reconstructing freeform products, and shape optimization for improving the manufacturability of freeform products. Based on these techniques, the design automation problem for human-centered freeform products can be fundamentally solved. Researchers and developers working on problems of automatic designing individually customized products can use this book as a reference, and it can also be used in courses in computer-aided product design at the graduate level.

This book introduces algorithms of human body reconstruction, freeform product modeling, constraining and reconstructing freeform products and shape optimization for improving the manufacturability of freeform products, to assist with automate design tasks.
1 Introduction
1(8)
1.1 Design Automation in Commercial CAD/CAM Systems
1(1)
1.2 Human-Centered Freeform Products
2(2)
1.3 Demanded New Technology for Design
4(5)
References
6(3)
2 Digital Human Bodies for Individuals
9(78)
2.1 Reconstruction of Human Bodies for Individuals
9(21)
2.1.1 Shape Acquisition
9(1)
2.1.2 Methods for Surface Reconstruction
10(2)
2.1.3 Orienting Unorganized Points for Surface Reconstruction
12(7)
2.1.4 Iterative Consolidation of Unorganized Points
19(11)
2.2 Feature Point Extraction
30(12)
2.2.1 Problem Definition
31(1)
2.2.2 Rule-Based Extraction
32(1)
2.2.3 Bending-Invariant Matching Algorithm
33(9)
2.3 Optimal Cross-Parameterization
42(31)
2.3.1 Patch-Based Cross-Parameterization
44(4)
2.3.2 Construction of Common Base Domains
48(12)
2.3.3 Optimization
60(13)
2.4 Shape Space Analysis of Human Bodies
73(4)
2.4.1 Statistical Model
74(2)
2.4.2 Synthesis-Based Reconstruction
76(1)
2.5 Parametric Design of 3D Human Body
77(10)
2.5.1 Correlation with Semantic Parameters
79(1)
2.5.2 Feasibility Check
79(2)
2.5.3 Discussion
81(1)
References
82(5)
3 Geometry of Freeform Products
87(20)
3.1 Non-Manifold Data Structure for Freeform Products
87(7)
3.1.1 Topology
87(1)
3.1.2 Data Structure
88(4)
3.1.3 Topological Operators
92(2)
3.2 Constructive Design
94(7)
3.2.1 Feature Graph
95(1)
3.2.2 Constraint Sets
96(3)
3.2.3 Visible Geometry Specified by Sketch Input
99(1)
3.2.4 Shape Construction
100(1)
3.3 Interactive Design of Tight Products
101(6)
3.3.1 Styling Design by Curve Drawing
101(1)
3.3.2 Trimming
102(1)
References
103(4)
4 Design Automation of Human-Centered Products
107(26)
4.1 Transformation of Style Design
107(1)
4.2 Shape Warping Based on Free-Form Deformation
108(4)
4.2.1 Shape Encoding onto Human Bodies
109(2)
4.2.2 Decoding for Shape Reconstruction
111(1)
4.3 Design Automation Based on Volumetric Parameterization
112(8)
4.3.1 Rigid Body Transformation
113(2)
4.3.2 RBF-Based Elastic Function
115(1)
4.3.3 Surface Fitting
116(2)
4.3.4 CSRBF Approach for Volumetric Parameterization
118(1)
4.3.5 Discussion
119(1)
4.4 Realization of Flexible Shape Control
120(13)
4.4.1 Specifying Features on Product
123(1)
4.4.2 Shape Matching on Features
124(3)
4.4.3 Sampling and Construction of Local Support
127(1)
4.4.4 Local Shape Encoding
128(1)
4.4.5 Controlled Reconstruction
129(1)
4.4.6 Examples
130(1)
References
131(2)
5 Manufacturability of Products Fabricated by Planar Materials
133(66)
5.1 Manufacturability Problem
133(1)
5.2 Surface Flattening Based on Energy Model
134(7)
5.2.1 Energy Function and Energy Release
135(3)
5.2.2 Triangle Flattening
138(2)
5.2.3 Planar Mesh Deformation
140(1)
5.3 Geometry Processing for Flattenable Mesh Surface
141(21)
5.3.1 Flattenable Laplacian Meshes
141(8)
5.3.2 Variational Subdivision of FL Meshes
149(2)
5.3.3 Local Flattenable Perturbation
151(3)
5.3.4 Least-Norm Solution for FL Mesh Processing
154(8)
5.4 Segmentation for Production
162(15)
5.4.1 LPFB Computation
164(9)
5.4.2 Quasi-Developable Mesh Segmentation
173(3)
5.4.3 Discussion on Limitations
176(1)
5.5 WireWarping: Surface Flattening with Length-Preserved Feature Curves
177(9)
5.5.1 Preliminary Definitions
178(2)
5.5.2 Formulation
180(1)
5.5.3 Laying Out Feature Curves and Interior Mesh Vertices
181(2)
5.5.4 Numerical Analysis and Least-Norm Solution
183(3)
5.6 WireWarping++: Surface Flattening with Length Control
186(13)
5.6.1 Multi-Loop Optimization Framework
187(2)
5.6.2 Shape Error Function
189(1)
5.6.3 Topology Processing
190(2)
5.6.4 Case Study: Design and Manufacturing of Jeans
192(3)
References
195(4)
6 Compression Products Fabricated by Extensible Materials
199(26)
6.1 Elastic Medical Braces
199(12)
6.1.1 Woven Model for Elastic Brace
200(2)
6.1.2 Methodology
202(6)
6.1.3 Algorithmic Details
208(3)
6.2 A Physical/Geometric Approach for Patterns of Compression Garment
211(9)
6.2.1 Physical Model
211(3)
6.2.2 Geometric Constraints
214(1)
6.2.3 Numerical Solution
215(4)
6.2.4 Experimental Results and Verification
219(1)
6.3 Material-Related Coefficients
220(5)
References
223(2)
Index 225
Dr. Charlie C. L. Wang is currently an Associate Professor at the Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, where he began his academic career in 2003. He gained his B.Eng. (1998) in Mechatronics Engineering from Huazhong University of Science and Technology, M.Phil. (2000) and Ph.D. (2002) in Mechanical Engineering from the Hong Kong University of Science and Technology. He is a member of ASME and IEEE, and Chairman of Technical Committee on Computer-Aided Product and Process Development (CAPPD) of ASME. He is currently on the editorial board of Computer-Aided Design journal and International Journal of Precision Engineering and Manufacturing, and is an Associate Editor of Journal of the Chinese Institute of Industrial Engineers and International Journal of Virtual Reality. Dr. Wang has received a few awards including the ASME CIE Young Engineer Award (2009), the CUHK Young Researcher Award (2009), the CUHK Vice-Chancellor's Exemplary Teaching Award (2008), the Best Paper Awards of ASME CIE Conferences (in 2008 and 2001), and the Prakash Krishnaswami CAPPD Best Paper Award of ASME CIE Conference in 2011. His current research interests include geometric modeling in computer-aided design and manufacturing, biomedical engineering and computer graphics, as well as computational physics in virtual reality.