Muutke küpsiste eelistusi

E-raamat: Geometric Optics for Surface Waves in Nonlinear Elasticity

Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 112,71 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This work is devoted to the analysis of high frequency solutions to the equations of nonlinear elasticity in a half-space. The authors consider surface waves (or more precisely, Rayleigh waves) arising in the general class of isotropic hyperelastic models, which includes in particular the Saint Venant-Kirchhoff system. Work has been done by a number of authors since the 1980s on the formulation and well-posedness of a nonlinear evolution equation whose (exact) solution gives the leading term of an approximate Rayleigh wave solution to the underlying elasticity equations. This evolution equation, which is referred to as ``the amplitude equation'', is an integrodifferential equation of nonlocal Burgers type. The authors begin by reviewing and providing some extensions of the theory of the amplitude equation. The remainder of the paper is devoted to a rigorous proof in 2D that exact, highly oscillatory, Rayleigh wave solutions $u^{\varepsilon} $ to the nonlinear elasticity equations exist on a fixed time interval independent of the wavelength $\varepsilon $, and that the approximate Rayleigh wave solution provided by the analysis of the amplitude equation is indeed close in a precise sense to $u^{\varepsilon}$ on a time interval independent of $\varepsilon $. This paper focuses mainly on the case of Rayleigh waves that are pulses, which have profiles with continuous Fourier spectrum, but the authors' method applies equally well to the case of wavetrains, whose Fourier spectrum is discrete.
Chapter 1 General introduction
1(10)
Chapter 2 Derivation of the weakly nonlinear amplitude equation
11(30)
2.1 The variational setting: assumptions
11(5)
2.2 Weakly nonlinear asymptotics
16(10)
2.3 Isotropic elastodynamics
26(9)
2.4 Well-posedness of the amplitude equation
35(6)
Chapter 3 Existence of exact solutions
41(64)
3.1 Introduction
41(12)
3.2 The basic estimates for the linearized singular systems
53(9)
3.3 Uniform time of existence for the nonlinear singular systems
62(5)
3.4 Singular norms of nonlinear functions
67(8)
3.5 Uniform higher derivative estimates and proof of Theorem 3.7
75(18)
3.6 Local existence and continuation for the singular problems with ε fixed
93(12)
Chapter 4 Approximate solutions
105(10)
4.1 Introduction
105(3)
4.2 Construction of the leading term and corrector
108(7)
Chapter 5 Error Analysis and proof of Theorem 3.8
115(20)
5.1 Introduction
115(4)
5.2 Building block estimates
119(4)
5.3 Forcing estimates
123(4)
5.4 Estimates of the extended approximate solution
127(1)
5.5 Endgame
128(7)
Chapter 6 Some extensions
135(6)
6.1 Extension to general isotropic hyperelastic materials
135(1)
6.2 Extension to wavetrains
136(2)
6.3 The case of dimensions d ≥ 3
138(3)
Appendix A Singular pseudodifferential calculus for pulses
141(8)
A.1 Symbols
141(1)
A.2 Definition of operators and action on Sobolev spaces
142(1)
A.3 Adjoints and products
143(1)
A.4 Extended calculus
144(1)
A.5 Commutator estimates
145(4)
Bibliography 149
Jean-Francois Coulombel, Universite de Nantes, France

Mark Williams, University of North Carolina, Chapel Hill, NC