Muutke küpsiste eelistusi

E-raamat: Geometric Relativity

Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 125,97 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Many problems in general relativity are essentially geometric in nature, in the sense that they can be understood in terms of Riemannian geometry and partial differential equations. This book is centered around the study of mass in general relativity using the techniques of geometric analysis. Specifically, it provides a comprehensive treatment of the positive mass theorem and closely related results, such as the Penrose inequality, drawing on a variety of tools used in this area of research, including minimal hypersurfaces, conformal geometry, inverse mean curvature flow, conformal flow, spinors and the Dirac operator, marginally outer trapped surfaces, and density theorems. This is the first time these topics have been gathered into a single place and presented with an advanced graduate student audience in mind; several dozen exercises are also included.

The main prerequisite for this book is a working understanding of Riemannian geometry and basic knowledge of elliptic linear partial differential equations, with only minimal prior knowledge of physics required. The second part of the book includes a short crash course on general relativity, which provides background for the study of asymptotically flat initial data sets satisfying the dominant energy condition.
Preface ix
Part 1 Riemannian geometry
Chapter 1 Scalar curvature
3(60)
§1.1 Notation and review of Riemannian geometry
3(14)
§1.2 A survey of scalar curvature results
17(6)
Chapter 2 Minimal hypersurfaces
23(1)
§2.1 Basic definitions and the Gauss-Codazzi equations
23(3)
§2.2 First and second variation of volume
26(12)
§2.3 Minimizing hypersurfaces and positive scalar curvature
38(16)
§2.4 More scalar curvature rigidity theorems
54(9)
Chapter 3 The Riemannian positive mass theorem
63(44)
§3.1 Background
63(13)
§3.2 Special cases of the positive mass theorem
76(10)
§3.3 Reduction to Theorem 1.30
86(18)
§3.4 A few words on Ricci flow
104(3)
Chapter 4 The Riemannian Penrose inequality
107(52)
§4.1 Riemannian apparent horizons
107(14)
§4.2 Inverse mean curvature flow
121(21)
§4.3 Bray's conformal flow
142(17)
Chapter 5 Spin geometry
159(22)
§5.1 Background
159(7)
§5.2 The Dirac operator
166(3)
§5.3 Witten's proof of the positive mass theorem
169(6)
§5.4 Related results
175(6)
Chapter 6 Quasi-local mass
181(26)
§6.1 Bartnik mass and static metrics
181(6)
§6.2 Bartnik minimizers
187(6)
§6.3 Brown-York mass
193(6)
§6.4 Bartnik data with η = 0
199(8)
Part 2 Initial data sets
Chapter 7 Introduction to general relativity
207(48)
§7.1 Spacetime geometry
207(7)
§7.2 The Einstein field equations
214(7)
§7.3 The Einstein constraint equations
221(7)
§7.4 Black holes and Penrose incompleteness
228(12)
§7.5 Marginally outer trapped surfaces
240(9)
§7.6 The Penrose inequality
249(6)
Chapter 8 The spacetime positive mass theorem
255(30)
§8.1 Proof for < 8
256(19)
§8.2 Spacetime positive mass rigidity
275(1)
§8.3 Proof for spin manifolds
275(10)
Chapter 9 Density theorems for the constraint equations
285(16)
§9.1 The constraint operator
285(7)
§9.2 The density theorem for vacuum constraints
292(3)
§9.3 The density theorem for DEC (Theorem 8.3)
295(6)
Appendix A Some facts about second-order linear elliptic operators
301(42)
§A.1 Basics
301(17)
§A.2 Weighted spaces on asymptotically flat manifolds
318(19)
§A.3 Inverse function theorem and Lagrange multipliers
337(6)
Bibliography 343(16)
Index 359
Dan A. Lee, CUNY Graduate Center and Queens College, New York, NY.