About the Author |
|
xv | |
Preface |
|
xvii | |
|
The Organization of the Book |
|
|
xix | |
|
|
xx | |
|
|
xxi | |
Acknowledgements |
|
xxiii | |
Part 1 Traditional Methods |
|
|
1 Elements of Descriptive Geometry |
|
|
3 | (78) |
|
|
4 | (2) |
|
|
6 | (1) |
|
1.3 How We See - The Central Projection |
|
|
6 | (2) |
|
|
8 | (9) |
|
|
8 | (1) |
|
|
9 | (5) |
|
|
14 | (3) |
|
1.4.4 Conclusions on Central Projection |
|
|
17 | (1) |
|
1.5 A Note on Stereoscopic Vision |
|
|
17 | (2) |
|
1.6 The Parallel Projection |
|
|
19 | (2) |
|
|
19 | (1) |
|
|
19 | (1) |
|
1.6.3 The Concept of Scale |
|
|
20 | (1) |
|
1.7 The Orthogonal Projection |
|
|
21 | (4) |
|
|
21 | (2) |
|
1.7.2 The Projection of a Right Angle |
|
|
23 | (2) |
|
|
25 | (2) |
|
|
27 | (2) |
|
|
29 | (3) |
|
1.10.1 The Projections of a Straight Line |
|
|
29 | (2) |
|
1.10.2 Intersecting Lines |
|
|
31 | (1) |
|
|
32 | (3) |
|
1.12 An Example of Plane-Faceted Solid - The Cube |
|
|
35 | (2) |
|
1.13 A Space Curve - The Helix |
|
|
37 | (1) |
|
|
38 | (3) |
|
|
41 | (3) |
|
|
41 | (1) |
|
1.15.2 Points on the Cone Surface |
|
|
42 | (2) |
|
|
44 | (8) |
|
|
44 | (1) |
|
|
45 | (1) |
|
|
46 | (2) |
|
|
48 | (2) |
|
|
50 | (2) |
|
|
52 | (9) |
|
|
54 | (2) |
|
|
56 | (4) |
|
1.17.3 An Ambiguity of the Isometric Projection |
|
|
60 | (1) |
|
|
61 | (3) |
|
1.18.1 What Is a Developed Surface |
|
|
61 | (1) |
|
1.18.2 The Development of a Cylindrical Surface |
|
|
62 | (1) |
|
1.18.3 The Development of a Conic Surface |
|
|
63 | (1) |
|
|
64 | (2) |
|
|
66 | (4) |
|
Appendix 1.A The Connection to Linear Algebra and MATLAB |
|
|
70 | (5) |
|
Appendix 1.8 First Steps in MultiSurf |
|
|
75 | (6) |
|
2 The Hull Surface - Graphic Definition |
|
|
81 | (40) |
|
|
81 | (5) |
|
|
86 | (3) |
|
2.2.1 A Simple, Idealized Hull Surface |
|
|
86 | (3) |
|
2.3 Main Dimensions and Coefficients of Form |
|
|
89 | (5) |
|
2.4 Systems of Coordinates |
|
|
94 | (1) |
|
2.5 The Hull Surface of a Real Ship |
|
|
95 | (1) |
|
2.6 Consistency and Fairness of Ship Lines |
|
|
96 | (6) |
|
|
102 | (1) |
|
|
103 | (1) |
|
2.9 Shell Expansion and Wetted Surface |
|
|
104 | (4) |
|
2.10 An Example in MultiSurf |
|
|
108 | (8) |
|
|
116 | (2) |
|
|
118 | (3) |
|
3 Geometric Properties of Areas and Volumes |
|
|
121 | (76) |
|
|
122 | (1) |
|
3.2 Change of Coordinate Axes |
|
|
123 | (2) |
|
3.2.1 Translation of Coordinate Axes |
|
|
123 | (1) |
|
3.2.2 Rotation of Coordinate Axes |
|
|
124 | (1) |
|
|
125 | (6) |
|
|
125 | (2) |
|
|
127 | (3) |
|
3.3.3 Examples in Naval Architecture |
|
|
130 | (1) |
|
3.4 First Moments and Centroids of Areas |
|
|
131 | (3) |
|
|
131 | (1) |
|
|
132 | (1) |
|
3.4.3 Examples in Naval Architecture |
|
|
133 | (1) |
|
3.5 Second Moments of Areas |
|
|
134 | (22) |
|
|
134 | (2) |
|
3.5.2 Parallel Translation of Axes |
|
|
136 | (1) |
|
|
137 | (3) |
|
3.5.4 The Tensor of Inertia |
|
|
140 | (1) |
|
|
141 | (1) |
|
3.5.6 The Ellipse of Inertia |
|
|
142 | (1) |
|
3.5.7 A Problem of Eigenvalues |
|
|
143 | (3) |
|
|
146 | (9) |
|
3.5.9 Examples in Naval Architecture |
|
|
155 | (1) |
|
|
156 | (5) |
|
|
156 | (1) |
|
|
156 | (3) |
|
3.6.3 Moments and Centroids of Volumes |
|
|
159 | (2) |
|
|
161 | (2) |
|
|
163 | (6) |
|
|
169 | (8) |
|
3.9.1 Numerical Calculations |
|
|
170 | (2) |
|
3.9.2 The 'One Minus Prismatic' Method |
|
|
172 | (2) |
|
|
174 | (2) |
|
3.9.4 Lackenby's General Method |
|
|
176 | (1) |
|
|
177 | (6) |
|
|
177 | (5) |
|
3.10.2 A MATLAB Digitizer |
|
|
182 | (1) |
|
|
183 | (5) |
|
|
188 | (9) |
Part 2 Differential Geometry |
|
|
|
197 | (26) |
|
|
197 | (1) |
|
4.2 Parametric Representation |
|
|
198 | (3) |
|
4.3 Parametric Equation of Straight Line |
|
|
201 | (3) |
|
|
204 | (3) |
|
|
204 | (1) |
|
4.4.2 Working With Parametric Equations |
|
|
205 | (2) |
|
|
207 | (1) |
|
4.5 Derivatives of Parametric Functions |
|
|
207 | (2) |
|
4.6 Notation of Derivatives |
|
|
209 | (1) |
|
|
210 | (1) |
|
|
210 | (1) |
|
4.9 Arc-Length Parametrization |
|
|
211 | (2) |
|
4.10 The Curve of Centres of Buoyancy |
|
|
213 | (6) |
|
4.10.1 Parametric Equations |
|
|
213 | (3) |
|
4.10.2 A Theorem on the Axis of Inclination |
|
|
216 | (1) |
|
4.10.3 The Tangent and the Normal to the B-Curve |
|
|
217 | (1) |
|
4.10.4 Parametric Equations for Small Angles of Inclination |
|
|
217 | (2) |
|
|
219 | (1) |
|
|
220 | (3) |
|
|
223 | (36) |
|
|
223 | (1) |
|
5.2 The Definition of Curvature |
|
|
224 | (3) |
|
5.2.1 Curvature in Explicit Representation |
|
|
225 | (1) |
|
5.2.2 Curvature in Parametric Representation |
|
|
226 | (1) |
|
|
227 | (6) |
|
|
227 | (1) |
|
5.3.2 Definition 1 detailed |
|
|
227 | (1) |
|
5.3.3 Definition 2 Detailed |
|
|
228 | (2) |
|
5.3.4 Definition 3 Detailed |
|
|
230 | (1) |
|
5.3.5 Centre of Curvature in Parametric Representation |
|
|
231 | (2) |
|
5.4 An Application in Kinematics - The Centrifugal Acceleration |
|
|
233 | (3) |
|
|
233 | (1) |
|
|
234 | (1) |
|
|
235 | (1) |
|
5.5 Another Application in Mechanics - The Elastic Line |
|
|
236 | (2) |
|
5.6 An Application in Naval Architecture - The Metacentric Radius |
|
|
238 | (1) |
|
5.7 Differential Metacentric Radius |
|
|
239 | (1) |
|
|
239 | (2) |
|
|
241 | (1) |
|
5.10 A Lemma on the Normal to a Curve in Implicit Form |
|
|
242 | (2) |
|
|
244 | (2) |
|
5.12 The Metacentric Evolute |
|
|
246 | (3) |
|
5.13 Curvature and Fair Lines |
|
|
249 | (1) |
|
|
249 | (3) |
|
|
252 | (2) |
|
|
254 | (1) |
|
Appendix 5.A Curvature in MultiSurf |
|
|
255 | (4) |
|
|
259 | (46) |
|
|
259 | (1) |
|
6.2 Parametric Representation |
|
|
260 | (6) |
|
|
266 | (1) |
|
6.4 First Fundamental Form |
|
|
267 | (3) |
|
6.5 Second Fundamental Form |
|
|
270 | (5) |
|
6.6 Principal, Gaussian, and Mean Curvatures |
|
|
275 | (3) |
|
|
278 | (5) |
|
6.7.1 Cylindrical Surfaces |
|
|
279 | (1) |
|
|
280 | (1) |
|
6.7.3 Surfaces of Tangents |
|
|
281 | (1) |
|
6.7.4 A Doubly-Ruled Surface, the Hyperboloid of One Sheet |
|
|
282 | (1) |
|
|
283 | (2) |
|
|
285 | (3) |
|
6.10 Geodesics and Plate Development |
|
|
288 | (2) |
|
6.11 On the Nature of Surface Curvature |
|
|
290 | (3) |
|
|
293 | (3) |
|
|
296 | (2) |
|
Appendix 6.A A Few MultiSurf Tools for Working With Surfaces |
|
|
298 | (7) |
Part 3 Computer Methods |
|
|
|
305 | (20) |
|
|
305 | (2) |
|
|
307 | (1) |
|
|
308 | (2) |
|
7.4 Working With Parametric Splines |
|
|
310 | (2) |
|
|
312 | (2) |
|
7.6 Chord-Length Parametrization |
|
|
314 | (2) |
|
7.7 Centripetal Parametrization |
|
|
316 | (1) |
|
|
317 | (1) |
|
|
318 | (3) |
|
Appendix 7.A MultiSurf - Cubic Spline, Polycurve |
|
|
321 | (4) |
|
8 Geometrical Transformations |
|
|
325 | (36) |
|
|
325 | (3) |
|
8.2 Transformations in the Plane |
|
|
328 | (12) |
|
|
328 | (1) |
|
8.2.2 Rotation Around the Origin |
|
|
329 | (1) |
|
8.2.3 Rotation About an Arbitrary Point |
|
|
330 | (2) |
|
|
332 | (1) |
|
|
332 | (2) |
|
|
334 | (1) |
|
8.2.7 Scaling About the Origin |
|
|
334 | (1) |
|
8.2.8 Affine Transformations |
|
|
335 | (2) |
|
8.2.9 Homogeneous Coordinates |
|
|
337 | (3) |
|
8.3 Transformations in 3D Space |
|
|
340 | (2) |
|
8.4 Perspective Projections |
|
|
342 | (6) |
|
8.4.1 The Projection Matrix |
|
|
342 | (3) |
|
8.4.2 Ideal and Vanishing Points |
|
|
345 | (2) |
|
|
347 | (1) |
|
8.4.4 The Orthographic Projection as Limit of Perspective Projection |
|
|
347 | (1) |
|
8.5 Affine Combinations of Points |
|
|
348 | (5) |
|
8.5.1 Affine Combination of Two Points - Collinearity |
|
|
348 | (2) |
|
8.5.2 Alternative Proof of Collinearity |
|
|
350 | (1) |
|
8.5.3 Affine Combination of Three Points - Coplanarity |
|
|
351 | (2) |
|
|
353 | (1) |
|
|
354 | (2) |
|
|
356 | (5) |
|
|
361 | (26) |
|
|
361 | (2) |
|
9.2 The First-Degree Bezier Curves |
|
|
363 | (1) |
|
9.3 The Second-Degree Bezier Curves |
|
|
363 | (1) |
|
9.4 The Third-Degree Bezier Curves |
|
|
364 | (1) |
|
9.5 The General Definition of Bezier Curves |
|
|
365 | (2) |
|
9.6 Interactive Manipulation of Bezier Curves |
|
|
367 | (1) |
|
9.7 De Casteljau's Algorithm |
|
|
368 | (3) |
|
9.8 Some Properties of Bezier Curves |
|
|
371 | (4) |
|
9.8.1 The First and the Last Point of the Curve |
|
|
371 | (1) |
|
|
372 | (1) |
|
|
372 | (1) |
|
9.8.4 Variance Diminishing Property |
|
|
373 | (1) |
|
9.8.5 Invariance Under Affine Transformations |
|
|
373 | (2) |
|
9.9 Joining Two Bezier Curves |
|
|
375 | (1) |
|
9.10 Moving a Control Point |
|
|
376 | (1) |
|
9.11 Rational Bezier Curves |
|
|
376 | (4) |
|
|
380 | (1) |
|
|
381 | (6) |
|
|
387 | (24) |
|
|
387 | (1) |
|
|
388 | (1) |
|
|
389 | (3) |
|
10.4 Moving a Control Point |
|
|
392 | (1) |
|
|
392 | (2) |
|
|
394 | (1) |
|
10.7 Some Properties of the B-Splines |
|
|
395 | (2) |
|
|
397 | (6) |
|
|
403 | (2) |
|
|
405 | (3) |
|
Appendix 10.A A Note on B-Splines and NURBS in MultiSurf |
|
|
408 | (3) |
|
11 Computer Representation of Surfaces |
|
|
411 | (30) |
|
|
411 | (1) |
|
|
412 | (8) |
|
|
413 | (6) |
|
|
419 | (1) |
|
11.3 Bicubic Bezier Patch |
|
|
420 | (5) |
|
11.4 Joining Two Bezier Patches |
|
|
425 | (3) |
|
|
428 | (2) |
|
|
430 | (3) |
|
11.7 Computer-Aided Design of Hull Surfaces |
|
|
433 | (2) |
|
|
435 | (1) |
|
|
436 | (2) |
|
Appendix 11.A A Note on Surfaces in MultiSurf |
|
|
438 | (3) |
Part 4 Applications in Naval Architecture |
|
|
12 Hull Transformations by Computer Software |
|
|
441 | (12) |
|
|
441 | (1) |
|
|
442 | (4) |
|
12.3 A Note on Lackenby's Transformation |
|
|
446 | (1) |
|
12.4 Affine Combinations of Offsets |
|
|
446 | (1) |
|
|
447 | (3) |
|
12.6 Non-Linear Transformations |
|
|
450 | (1) |
|
|
450 | (1) |
|
|
451 | (2) |
|
|
453 | (18) |
|
|
453 | (1) |
|
13.2 Working With Complex Variables |
|
|
454 | (3) |
|
|
457 | (2) |
|
|
459 | (9) |
|
|
468 | (1) |
|
|
469 | (2) |
Bibliography |
|
471 | (8) |
Answers to Selected Exercises |
|
479 | (16) |
Index |
|
495 | |