Muutke küpsiste eelistusi

E-raamat: On the Geometry of Some Special Projective Varieties

Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 86,44 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Providing an introduction to both classical and modern techniques in projective algebraic geometry, this monograph treats the geometrical properties of varieties embedded in projective spaces, their secant and tangent lines, the behavior of tangent linear spaces, the algebro-geometric and topological obstructions to their embedding into smaller projective spaces, and the classification of extremal cases. It also provides a solution of Hartshornes Conjecture on Complete Intersections for the class of quadratic manifolds and new short proofs of previously known results, using the modern tools of Mori Theory and of rationally connected manifolds.

The new approach to some of the problems considered can be resumed in the principle that, instead of studying a special embedded manifold uniruled by lines, one passes to analyze the original geometrical property on the manifold of lines passing through a general point and contained in the manifold. Once thisembedded manifold, usually of lower codimension, is classified, one tries to reconstruct the original manifold, following a principle appearing also in other areas of geometry such as projective differential geometry or complex geometry.

Arvustused

The book under review (awarded the 2015 Book Prize of the Unione Matematica Italiana) gives a survey of some classical and recent results on the geometry of projective varieties and its applications. The book will be useful to anyone interested in classical algebraic geometry. (Fyodor L. Zak, Mathematical Reviews, May, 2017)



The book under review covers fundamental aspects of the theory of secant spaces to varieties, and contains a careful description of many of its recent applications to Algebraic Geometry. Under this respect, it provides a fundamental advanced introduction to recent results and developments of a topic which experienced a rapid evolution in the last years. (Luca Chiantini, zbMATH 1337.14001, 2016)

1 Tangent Cones, Tangent Spaces, Tangent Stars: Secant, Tangent, Tangent Star and Dual Varieties of an Algebraic Variety
1(38)
1.1 Tangent Cones and Tangent Spaces of an Algebraic Variety and Their Associated Varieties
1(7)
1.2 Join of Varieties
8(4)
1.3 Linear Projections
12(5)
1.4 Terracini's Lemma and Its First Applications
17(7)
1.5 Dual Varieties and Contact Loci of General Tangent Linear Spaces
24(15)
Exercises
31(5)
Hint for Problems of Chap. 1
36(3)
2 The Hilbert Scheme of Lines Contained in a Variety and Passing Through a General Point
39(36)
2.1 Basics of Deformation Theory of (Smooth) Rational Curves on Smooth Projective Varieties
39(11)
2.2 The Hilbert Scheme of Lines Contained in a Projective Variety and Passing Through a Point
50(7)
2.2.1 Notation, Definitions and Preliminary Results
50(3)
2.2.2 Singularities of Lx.X
53(4)
2.3 Equations for Lx.X ⊂ ((txX)*)
57(10)
2.3.1 Vx Versus TxX ∩ X for a Quadratic Variety
60(1)
2.3.2 Tangential Projection and Second Fundamental Form
61(3)
2.3.3 Approach to Bx.X = Lx.X via [ 19]
64(1)
2.3.4 Lines on Prime Fano Manifolds
65(2)
2.4 A Condition for Non-extendability
67(8)
2.4.1 Extensions of Lx.Y ⊂ Pn-1 via Lx.X ⊂ Pn
68(7)
3 The Fulton--Hansen Connectedness Theorem, Scorza's Lemma and Their Applications to Projective Geometry
75(20)
3.1 The Enriques--Zariski Connectedness Principle, the Fulton-Hansen Connectedness Theorem and the Generalizations of Some Classical Results in Algebraic Geometry
75(7)
3.2 Zak's Applications to Projective Geometry
82(4)
3.3 Tangential Invariants of Algebraic Varieties and Scorza's Lemma
86(3)
3.4 Severi's Characterization of the Veronese Surface Versus Mori's Characterization of Projective Spaces
89(6)
4 Local Quadratic Entry Locus Manifolds and Conic Connected Manifolds
95(20)
4.1 Definitions and First Geometrical Properties
95(2)
4.2 Qualitative Properties of CC-Manifolds and of LQEL-Manifolds
97(7)
4.3 Classification of LQEL-Manifolds with δ ≥ dim(X)/2
104(3)
4.4 Classification of Conic-Connected Manifolds and of Manifolds with Small Dual
107(8)
4.4.1 Classification of Varieties with Small Dual
108(4)
4.4.2 Bounds for the Dual Defect of a Manifold and for the Secant Defect of an LQEL-Manifold
112(3)
5 Hartshorne Conjectures and Severi Varieties
115(22)
5.1 Hartshorne Conjectures
115(5)
5.2 Proofs of Hartshorne's Conjecture for Quadratic Manifolds and of the Classification of Quadratic Hartshorne Manifolds
120(5)
5.2.1 The Bertram--Ein--Lazarsfeld Criterion for Complete Intersections
120(2)
5.2.2 Faltings' and Netsvetaev's Conditions for Complete Intersections
122(2)
5.2.3 Proofs of the Main Results
124(1)
5.3 Speculations on Hartshorne's Conjecture
125(4)
5.4 A Refined Linear Normality Bound and Severi Varieties
129(4)
5.5 Reconstruction of Severi Varieties of Dimension 2, 4, 8 and 16
133(4)
6 Varieties n-Covered by Curves of a Fixed Degree and the XJC Correspondence
137(40)
6.1 Preliminaries and Definitions
138(2)
6.1.1 Examples and Reinterpretation of Known Results
139(1)
6.2 Bounding the Embedding Dimension
140(7)
6.2.1 Previously Known Versions
141(1)
6.2.2 Looking for the Function π(r, n, δ) via Projective Geometry
141(4)
6.2.3 Relation to the Castelnuovo--Harris Bound
145(2)
6.3 Rationality of Xr+1 (n, δ) and of the General Curve of the n-Covering Family
147(5)
6.3.1 Bound for the Top Self Intersection of a Nef Divisor
150(2)
6.4 Quadro-Quadric Cremona Transformations and Xn (3, 3) ⊂ P2n+1
152(7)
6.5 A Digression on Power Associative Algebras and Some Involutive Cremona Transformations
159(16)
6.5.1 Power Associative Algebras, Jordan Algebras and Generalizations of Laplace Formulas
163(12)
6.6 The XJC-Correspondence
175(2)
7 Hypersurfaces with Vanishing Hessian
177(44)
7.1 Preliminaries, Definitions, Statement of the Problem and of the Classical Results
178(3)
7.2 Instances and Relevance of Hesse's Claim in Geometry and in Commutative Algebra
181(11)
7.2.1 The Polar Map
181(2)
7.2.2 Curvature and h(f)
183(2)
7.2.3 What Does the Condition ƒ Divides h(f) Measure?
185(1)
7.2.4 Weak and Strong Lefschetz Properties for Standard Artinian Gorenstein Graded Algebras
186(6)
7.3 The Gordan--Noether Identity
192(11)
7.3.1 Hesse's Claim for N = 2, 3
196(2)
7.3.2 Cremona Equivalence with a Cone
198(3)
7.3.3 Applications of the Gordan--Noether Identity to the Polar Map
201(2)
7.4 The Gordan--Noether--Franchetta Classification in P4 and Examples in Arbitrary Dimension
203(7)
7.4.1 Gordan-Noether, Franchetta, Permutti and Perazzo Examples
203(4)
7.4.2 A Geometrical Proof of the Gordan-Noether and Franchetta Classification of Hypersurfaces in P4 with Vanishing Hessian
207(3)
7.5 The Perazzo Map of Hypersurfaces with Vanishing Hessian
210(3)
7.6 Cubic Hypersurfaces with Vanishing Hessian and Their Classification for N ≤ 6
213(8)
7.6.1 Classes of Cubic Hypersurfaces with Vanishing Hessian According to Perazzo and Canonical Forms of Special Perazzo Cubic Hypersurfaces
213(2)
7.6.2 Cubics with Vanishing Hessian in PN with N ≤ 6
215(1)
7.6.3 Examples in Higher Dimension
216(5)
References 221(8)
Index 229