Muutke küpsiste eelistusi

E-raamat: Geophysical Studies in the Caucasus

Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 110,53 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The subject of this book is the methodology and results of integrated geophysical investigations in the Caucasian region, mainly interpretation of magnetic and gravity anomalies with utilization of a huge petrophysical database for the evaluation of geological structure and mineral resources. Relative voluminous geophysical data are useful for the Earth Sciences researchers interested in the Caucasian region (and adjacent and similar regions) characterized by complicated geological structure, inclined magnetization (polarization), uneven topography and mountain/sea transition. Examination of geophysical fields verified by super-deep wells drilling indicates that magmatic rocks of the Lesser Caucasus are extended northward under thick sedimentary cover of the Kura Depression up to the Greater Caucasus. These rocks form hidden petroleum-bearing traps of a newly identified type. On the basis of geophysical studies (mainly inexpensive magnetic and electric methods), a new copper-polymetallic province in the Greater Caucasus has been revealed. a newly developed integrated approach and special information-statistical techniques for processing and interpretation of geophysical data facilitate detection of important geological features, e.g. hidden intersections of linear structures that control location of large commercial ore and oil-and-gas deposits, as well as focuses of dangerous geodynamic events at a depth. Numerous illustrations (including colour) elucidate different problems and  solutions on various scales and in diverse geological-geophysical environments. Many aspects of this book have been presented at the teaching courses for bachelors, masters and doctors at the Tel-Aviv University (Tel Aviv, Israel) and Ben-Gurion University (Be'er-Sheva, Israel). Benefits to readers are predetermined by the combination of the authors many-years personal experience in the geophysical studies of Azerbaijan and other regions of the Caucasus with the author's knowledge of the modern level of geophysics in the world.
1 Introduction 1(4)
2 Tectonical-Geophysical Setting of the Caucasus 5(34)
2.1 The Origin of the Caucasus, Geological Evolution and Main Features
5(11)
2.1.1 Giscaucasus
8(1)
2.1.2 The Greater Caucasus
9(2)
2.1.3 The Transcaucasus
11(1)
2.1.4 The Lesser Caucasus
12(4)
2.2 A Brief History of Geophysical Studies in the Caucasus
16(13)
2.2.1 Initial Stage
16(2)
2.2.2 Formative Stage
18(8)
2.2.3 Contemporary Period
26(3)
2.3 The Caucasus in the Light of Regional Geophysical Analysis
29(10)
3 Methodological Specificities of Geophysical Studies in the Complex Environments of the Caucasus 39(100)
3.1 Specifics of Media and Geophysical Studies
39(12)
3.1.1 Main Features: Advantages of Natural Field Studies
39(3)
3.1.2 General Characteristics of the Targets and Host Media
42(4)
3.1.3 Typical Geophysical Noise Effects Under Mountainous Conditions
46(5)
3.2 Terrain Correction and Utilization of Topography for Extraction of Geological Information
51(29)
3.2.1 Problem of Terrain Correction: Two Aspects of This Problem
51(4)
3.2.2 Common Correction Techniques for Different Measurement Heights
55(4)
3.2.3 Reduction to Line
59(3)
3.2.4 Correlation Technique for Terrain Correction
62(18)
3.3 Elimination of Field Variations with Time
80(2)
3.4 Inverse Problem Solution in Complex Environments: The Example of a Magnetic Field
82(5)
3.4.1 Characteristic Point Method
83(1)
3.4.2 Tangent Method
84(2)
3.4.3 Interpretation of Magnetic Anomalies on an Inclined Surface
86(1)
3.5 Inversion of Other Natural (Gravity, Temperature, Self-Potential, and Seismicity) Fields
87(8)
3.5.1 Gravity Field
87(3)
3.5.2 Temperature Field
90(2)
3.5.3 Self-Potential Field
92(2)
3.5.4 Seismicity Field
94(1)
3.6 Inversion of Artificial and Quasi-Natural (Resistivity, Induced Polarization, Very Low Frequency) Fields
95(6)
3.6.1 Resistivity
95(1)
3.6.2 Induced Polarization
96(3)
3.6.3 VLF
99(2)
3.7 Information and Probabilistic Interpretation Methods for the Detection of Hidden Targets
101(13)
3.7.1 Entropy and Information
101(2)
3.7.2 Information-Statistical Techniques for the Analysis of Single Geophysical Fields
103(11)
3.8 Integrated Interpretation
114(18)
3.8.1 Combined Information Formalization of Geophysical-Geological Processes
115(4)
3.8.2 Multimodel Approach to Geophysical Data Analysis (on Example of Magnetic Data Analysis)
119(1)
3.8.3 Variants of Integrated Interpretation
120(5)
3.8.4 Classification by Logical-Statistical (Information-Statistical) Techniques
125(1)
3.8.5 Pattern Recognition by Standard and Control Sets of Targets
126(1)
3.8.6 Classification of Targets into Compact Groups in an Indicator Space
127(1)
3.8.7 Revealing Targets (Classes of Targets) with Expected Properties
128(4)
3.9 Choice of Geophysical Integration Elements and Their Quantity
132(7)
3.9.1 General Considerations
132(1)
3.9.2 Evaluation of Single Geophysical Method Efficiency
133(1)
3.9.3 Estimating Information by Indicator (Field) Gradations
134(2)
3.9.4 Estimating Geophysical Integration Efficiency Using Type I and Type II Error Probabilities
136(1)
3.9.5 Minimization of the Number of Combined Methods by Solving the "Four Colors Problem"
137(2)
4 Regional Physical-Geological Models and Regioning 139(80)
4.1 Utilization of Available Geological, Petrophysical and Geophysical Data
139(24)
4.1.1 Use of Geological Data
139(1)
4.1.2 Use of Petrophysical Data
140(12)
4.1.3 The Formation of an Indicator Space
152(8)
4.1.4 Common Characteristics of Petrophysical Boundaries and Geological Associations
160(3)
4.2 Regional Geophysical Schemes
163(18)
4.2.1 Quantitative Analysis and Regioning
163(14)
4.2.2 Field Differentiation into Regional and Local Isotropic Components
177(4)
4.3 3-D Combined Modeling of Gravity and Magnetic Fields
181(13)
4.3.1 Computation of Gravity Field Reductions
185(2)
4.3.2 Interactive Direct Problem Solution: Main Principles
187(1)
4.3.3 Computation of Gravity Reductions and Magnetic Field as a Component-Wise Process
188(2)
4.3.4 Terrain Relief Calculation
190(4)
4.4 Models of the Earth's Crust Along Regional Traverses
194(18)
4.4.1 3D Combined Modeling of Gravity and Magnetic Fields
194(4)
4.4.2 Examples of 3D Combined Modeling of Gravity and Magnetic Fields Along Interpretation Profiles
198(14)
4.5 Deep Structure Maps and Their Prognostic Importance
212(7)
5 Mining Geophysics 219(56)
5.1 Petrophysical Examination of Ore Areas
220(1)
5.2 Borehole Logging
221(1)
5.3 Northern Caucasus
221(6)
5.3.1 Gravity
221(4)
5.3.2 VLF
225(1)
5.3.3 Electromagnetic Methods
225(2)
5.4 Southern Slope of the Greater Caucasus
227(18)
5.4.1 Physical-Geological Models of Ore Deposits
227(1)
5.4.2 Physical-Geological Model of a Pyrite-Polymetallic Deposit of the Filizchay Type
228(1)
5.4.3 Gravity
229(3)
5.4.4 Induced Polarization
232(3)
5.4.5 VLF
235(4)
5.4.6 Near-Surface Temperature Survey
239(2)
5.4.7 Self-Potential Survey
241(1)
5.4.8 Magnetic Survey
242(1)
5.4.9 Electromagnetic Methods
242(2)
5.4.10 Integrated Analysis
244(1)
5.5 Lesser Caucasus
245(15)
5.5.1 Self-Potential Survey
245(1)
5.5.2 Physical-Geological Model of the Copper-Pyrite Deposit of the Lesser Caucasian Type
246(2)
5.5.3 Gravity
248(4)
5.5.4 Magnetic Survey
252(1)
5.5.5 Induced Polarization
253(2)
5.5.6 VLF
255(1)
5.5.7 Near-Surface Temperature Survey
256(1)
5.5.8 Electric and Electromagnetic Methods
257(2)
5.5.9 Simple Integrated Analysis
259(1)
5.5.10 Integrated Analysis of the Basis of PGM
259(1)
5.6 Underground Geophysics
260(10)
5.6.1 Gravity
261(3)
5.6.2 VLF
264(1)
5.6.3 Temperature Survey
264(2)
5.6.4 Self-Potential Survey
266(2)
5.6.5 Examples of Integrated Underground Observations
268(1)
5.6.6 Other Methods
268(2)
5.7 Further Perspectives of Mining Geophysics in the Caucasus
270(4)
5.7.1 Development of the Caucasian Mining Geophysics Databases
270(2)
5.7.2 ROV Geophysical Surveys for the Delineation of New Caucasian Ore Deposits
272(2)
5.7.3 Geophysical Examination of Old Caucasian Mine Spoils
274(1)
5.8 Comparison of Regional Fault Dislocations and Distribution of Useful Minerals
274(1)
6 The Kura Depression and Adjacent Basins 275(18)
6.1 The Kura Depression
275(7)
6.1.1 Magnetic Survey
276(1)
6.1.2 Gravity Survey
276(3)
6.1.3 Thermal Data Analysis
279(2)
6.1.4 Radiometric Survey
281(1)
6.1.5 Integrated Analysis
282(1)
6.2 South Caspian Basin
282(7)
6.3 Other Basins
289(4)
6.3.1 Kusar-Divitchi Basin
289(1)
6.3.2 Ossetia Depression
289(1)
6.3.3 Taman and Kuban Basins
290(3)
7 Geophysics in Hydrology 293(22)
7.1 Main Specifities of Geophysical Prospecting in Hydrogeology
293(11)
7.1.1 Methodological Principles of Geophysical Prospecting for Underground Waters
293(3)
7.1.2 Specificities of VES Data Interpretation
296(3)
7.1.3 Geophysical Specificities of Land Reclamation and Irrigation Studies
299(2)
7.1.4 Methodology of Underground Water Geophysical Prospecting in Mountain Areas
301(3)
7.2 Typical Geophysical Solutions to Hydrogeological Problems
304(8)
7.2.1 Discovering Fresh Water in the Northwestern Foothills of the Greater Caucasus: The study of Pebble Collectors
304(1)
7.2.2 Discovering Fresh Water in the Kura Depression: Aquifer Characteristics and their Relation to Deep Structure
305(4)
7.2.3 Searching of Thermal Waters
309(2)
7.2.4 Detecting Fresh Water in Mountainous Areas
311(1)
7.3 Geophysical Investigations of the Caucasian Lakes
312(3)
8 Environmental and Near-Surface Geophysics 315(22)
8.1 Investigations of Mud Volcanoes
315(6)
8.1.1 Geological, Geothermal and Seismic Specificities
315(1)
8.1.2 Gravity Prospecting
316(3)
8.1.3 Magnetic Prospecting
319(1)
8.1.4 Electric Prospecting and Radioactivity Mapping
320(1)
8.1.5 Relation Between Earthquakes and Mud Volcano Eruptions
320(1)
8.2 Engineering Geophysics
321(4)
8.2.1 Monitoring of Oil-and-Gas Pipelines
321(1)
8.2.2 Investigation and Monitoring of Dams
322(1)
8.2.3 Geophysical and Structural-Geological Analysis
322(1)
8.2.4 Investigation of Geophysical Field Time Variations
323(2)
8.3 Archaeogeophysics
325(6)
8.3.1 Northern Caucasus
325(3)
8.3.2 The Lesser Caucasus
328(1)
8.3.3 Taman and Kuban Regions
329(1)
8.3.4 Transcaucasus
330(1)
8.4 Environmental Geophysics
331(6)
8.4.1 Landslide Geophysical Monitoring
331(2)
8.4.2 Study of Radioactive Parameters
333(1)
8.4.3 Revealing Ring Structures
334(3)
9 Investigation of Seismic Activity 337(22)
9.1 Earthquakes in the Caucasus: A Short Historical Review
337(1)
9.2 Studying Petrophysical Properties in Seismogenic Regions
338(1)
9.3 Modern Geodynamic Events and Geophysical Detection Methods
339(7)
9.3.1 Gravity Temporary Tideless Variations
340(1)
9.3.2 Temporary Magnetic Variations Associated with Geodynamic Events
341(2)
9.3.3 Electric Field Potential Gradient
343(1)
9.3.4 Laser Interferometer
344(1)
9.3.5 VLF and ULF Time Variations
344(1)
9.3.6 Radon Precursors
344(1)
9.3.7 Temperature Precursors
345(1)
9.4 Long-Term Seismicity Prognosis
346(1)
9.5 Algorithms for Geodynamic Event Prediction
347(12)
9.5.1 Thermoelastic Characteristics and Their Relationship to Earthquakes
347(1)
9.5.2 Intraplate Seismicity Studies
347(1)
9.5.3 Areal Autocorrelation Analysis
348(1)
9.5.4 Geophysical Field Complexity as Factor of Seismicity Prognosis
348(2)
9.5.5 Correlations Between the Magnetic Field and Seismicity
350(1)
9.5.6 Revealing Hidden Intersections of Linear Structures
350(3)
9.5.7 Pattern Recognition of Regional Seismicity
353(1)
9.5.8 Wavelet Packet Approach
354(1)
9.5.9 Earthquakes as a Strongly Nonlinear Event
355(4)
Conclusion 359(2)
References 361(32)
Index 393