Muutke küpsiste eelistusi

E-raamat: Geotechnical and Exploration Drilling in the Polar Regions

  • Formaat: EPUB+DRM
  • Sari: Springer Polar Sciences
  • Ilmumisaeg: 01-Jan-2023
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783031072697
  • Formaat - EPUB+DRM
  • Hind: 159,93 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: EPUB+DRM
  • Sari: Springer Polar Sciences
  • Ilmumisaeg: 01-Jan-2023
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783031072697

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book provides a comprehensive review of drilling technologies in the polar regions, from the portable drilling equipment for shallow sampling and coring, to heavy drilling equipment for deep onshore and offshore drilling. Particular attention is given to safe drilling methods in permafrost. In recent years, interest in drilling in the polar regions has increased under the pressure of the geopolitical “rush” and the undiscovered resource potential. In addition, borehole monitoring of permafrost thermal states is urgently needed to obtain evidence of climate change. The book focuses on the latest drilling technologies but also discusses the historical development of sampling, and drilling tools and devices, over the last 60–70 years providing valuable insights into a way forward and future possibilities.


1 Drilling Targets in the Polar Regions
1(42)
1.1 Introduction to the Polar Regions
1(8)
1.1.1 Mapping the Earth's Polar Regions
1(2)
1.1.2 Polar Climate
3(1)
1.1.3 Polar Regions and Climate Changes
4(2)
1.1.4 Territorial Claims in the Arctic and Antarctica
6(3)
1.2 Geotechnical Subsurface Investigations in the Polar Regions
9(4)
1.3 Mineral Resources in the Polar Regions
13(8)
1.3.1 World Resources: Depletion of Existing and Exploration for New Sources
13(1)
1.3.2 Mineral Resources in the Arctic
13(5)
1.3.3 Mineral Resources in Antarctica
18(3)
1.4 Water and Geothermal Resources in the Polar Regions
21(7)
1.4.1 Antarctic and Greenland Ice Sheets as Freshwater Sources
21(3)
1.4.2 Water-Well Supply in the Polar Regions
24(1)
1.4.3 Geothermal Resources in the Arctic and Antarctica
25(3)
1.5 Borehole Disposal in the Polar Regions
28(2)
1.5.1 Radioactive Wastes Borehole Disposal
28(1)
1.5.2 Sub-Permafrost Carbon Dioxide Storage
29(1)
1.6 Scientific Drilling Targets in the Polar Regions
30(13)
1.6.1 Permafrost Temperature Monitoring
31(2)
1.6.2 Microbiological Studies in Permafrost
33(2)
1.6.3 Sedimentology of the Arctic and Southern Oceans
35(1)
1.6.4 Studies of Glacial and Subglacial Geology
36(1)
1.6.5 Polar Regions as Space Analogs of Extraterrestrial Investigations
37(1)
References
38(5)
2 Drilling Challenges and Drilling Methods in the Polar Regions
43(38)
2.1 Drilling Operation Logistics in the Polar Regions
43(5)
2.1.1 All-Weather and Winter Roads
44(1)
2.1.2 Railroads
45(1)
2.1.3 Air Transport
45(1)
2.1.4 River and Sea Transport
46(2)
2.1.5 Transport in Antarctica
48(1)
2.2 Low-Temperature Challenges in Drilling Operations
48(5)
2.2.1 Behavior of Construction Steels at Low Operating Temperatures
48(2)
2.2.2 Behavior of Hydraulic Systems at Low Operating Temperatures
50(3)
2.3 Permafrost Related Challenges in Drilling
53(13)
2.3.1 Permafrost: Types, Distribution, and Thickness
54(8)
2.3.2 Challenges Associated with Permafrost Thawing Around the Borehole
62(1)
2.3.3 Casing Challenges
63(2)
2.3.4 Gas Blowouts from Permafrost
65(1)
2.4 Sea Ice Challenges in Offshore Drilling
66(2)
2.5 Environmental and Social Impacts from Arctic and Antarctic Exploration
68(6)
2.5.1 Environmental Impact from Drilling Operations
68(2)
2.5.2 Potential Impacts on the Indigenous People in the Arctic Region
70(1)
2.5.3 Environmental Regulations and Protected Areas in Arctic
71(1)
2.5.4 Environmental Protection of Antarctic Area
72(2)
2.6 Drilling Methods and Drilling Program Planning
74(7)
2.6.1 Classification of Drilling Methods
74(2)
2.6.2 Planning of the Drilling Program
76(1)
References
77(4)
3 Non-Coring Physical Methods of Drilling in Frozen Soils
81(24)
3.1 Water-Jet Drilling
81(11)
3.1.1 Water-Jetting Cutting and Erosion of Frozen Soils
81(1)
3.1.2 Low-Pressure Water-Jet Drilling
82(7)
3.1.3 High-Pressure Water-Jet Drilling
89(3)
3.2 Steam-Jet Drilling
92(7)
3.2.1 Steam Points for Frozen Gold-Placer Thawing
92(2)
3.2.2 Steam Needles for Drilling Blast Holes
94(1)
3.2.3 Steam Drills for Piles Installation
94(5)
3.3 Flame-Jet Drilling
99(6)
References
102(3)
4 Non-Rotational Drilling and Sampling in Frozen Soils
105(34)
4.1 Penetrative and Dynamic Behavior of Frozen Soils
105(5)
4.1.1 Strength
105(2)
4.1.2 Compressibility
107(1)
4.1.3 Impact Resistance
108(2)
4.2 Direct-Push Drilling
110(15)
4.2.1 Driving
111(1)
4.2.2 Drive Sampling
111(6)
4.2.3 Penetrative Testing of Active Layer Thickness
117(4)
4.2.4 Cone Penetration Testing
121(4)
4.3 Percussion and Vibratory Drilling in Frozen Soils
125(14)
4.3.1 Cable-Tool Drilling
125(3)
4.3.2 Vibratory Drilling
128(2)
4.3.3 Hammer Drilling
130(4)
References
134(5)
5 Principles of Rotary Drilling in Frozen Soils
139(26)
5.1 General Considerations of Rotary Drilling in Frozen Soils
139(4)
5.2 Cutting Mechanics and Drill Bits for Drilling in Frozen Soils
143(7)
5.2.1 Basic Principles of Cutting in Frozen Soils
143(2)
5.2.2 General Design of Drill Bits
145(4)
5.2.3 Force of Cutting and Power Requirements
149(1)
5.3 Casing Design and Borehole Plugging
150(15)
5.3.1 Special Features of Casing Design in Frozen Soils
150(4)
5.3.2 Casing Cementing
154(2)
5.3.3 Casing-While-Drilling and Duplex Drilling
156(4)
5.3.4 Dry Borehole Plugging
160(1)
References
161(4)
6 Auger and Rotary Dry Drilling in Frozen Soils
165(24)
6.1 Types of Augers
165(3)
6.2 Auger Design Considerations
168(5)
6.3 Solid-Stem Continuous-Flight Augers and Bits
173(4)
6.4 Auger Core Drilling
177(1)
6.5 Helical Foundations and Ground Anchors
178(6)
6.5.1 Screw Piles
178(1)
6.5.2 Helical Piers
179(3)
6.5.3 Ground Anchors
182(2)
6.6 Rotary Dry-Core Drilling
184(5)
References
186(3)
7 Rotary Drilling with Fluid Circulation in Frozen Soils
189(30)
7.1 Temperature Behavior of Borehole
189(10)
7.1.1 Temperature Distribution of Circulating Drilling Fluid in Borehole
189(5)
7.1.2 Permafrost Thawing Around Borehole
194(2)
7.1.3 Preventive Actions of Permafrost Thawing and Drilling-Fluid Coolers
196(3)
7.2 Nonfreezing Drilling Fluids
199(11)
7.2.1 Classification and Requirements to Drilling Fluids
199(2)
7.2.2 Nondispersed Water-Based Drilling Fluids
201(3)
7.2.3 Dispersed Water-Based Drilling Fluids
204(4)
7.2.4 Ice-Erosion Capacity of Drilling Fluids
208(2)
7.3 Rotary-Percussion Fluid-Circulation Drilling
210(9)
7.3.1 Hydraulic Hammer Core Drilling
210(2)
7.3.2 Water-Powered, Down-the-Hole Hammer Drilling
212(2)
7.3.3 Sonic Drilling
214(1)
References
215(4)
8 Air and Foam Drilling in Frozen Soils
219(40)
8.1 Temperature Distribution of Compressed Air in Borehole
219(4)
8.2 Cooling and Dehumidification of Compressed Air
223(6)
8.2.1 Normalization of Compressed Air Properties
223(1)
8.2.2 Natural Heat Exchangers
223(2)
8.2.3 Thermodynamic Coolers
225(1)
8.2.4 Refrigerators and Combined Cooling Systems
226(1)
8.2.5 Dehumidification of Compressed Air
227(2)
8.3 Air Core Drilling Practices
229(4)
8.3.1 Equipment Arrangement
229(1)
8.3.2 Drill Bits
230(1)
8.3.3 Drilling Parameters
231(2)
8.4 Rotary-Percussion Air Drilling
233(7)
8.4.1 Top Hammer Drilling
233(1)
8.4.2 Down-the-Hole Air-Driven Hammer Drilling
234(6)
8.5 Foam Drilling
240(5)
8.6 Selected Field Experience of Drilling Frozen Soils and Rocks with Chilled Air and Foam
245(14)
8.6.1 Drilling with Chilled Air
245(5)
8.6.2 Drilling in Rock Glaciers
250(3)
8.6.3 Trials with Foam Drilling
253(2)
References
255(4)
9 Rigs and Drills for Geotechnical and Exploration Rotary Drilling in the Polar Regions
259(36)
9.1 Classification of Geotechnical and Exploration Rotary Drilling Rigs
259(3)
9.2 Portable Drills
262(22)
9.2.1 Man-Portable Dry Core Drills
262(8)
9.2.2 Non-coring Earth Augers
270(1)
9.2.3 Auger Core Drills
271(6)
9.2.4 Man-Portable Core Drills with Fluid-Air Circulation
277(1)
9.2.5 Portable and Heliportable Drilling Rigs
277(7)
9.3 Movable and Mobile Drilling Rigs
284(11)
9.3.1 Purpose-Built Mobile Drilling Rigs
285(1)
9.3.2 Commercial Movable and Mobile Drilling Rigs
286(3)
9.3.3 Large Mobile Drilling Rigs for Pile Installation
289(2)
References
291(4)
10 Special Drilling Methods in the Polar Regions
295(44)
10.1 Water-Well Drilling
295(5)
10.1.1 Types of Groundwater Occurrences
295(2)
10.1.2 Drilling Methods and Water-Well Design
297(3)
10.2 Ground-Source Heat Pumps Installation
300(3)
10.3 Drilling in Frozen Gold Placers
303(5)
10.3.1 Exploration Drilling
303(4)
10.3.2 Drilling for Thawing
307(1)
10.4 Microbiological Drilling and Sampling
308(5)
10.5 Drilling for Gas Hydrates
313(11)
10.5.1 Gas-Hydrates Distribution and Offshore Core Sampling
313(2)
10.5.2 Mallik Site, Mackenzie River Delta
315(5)
10.5.3 Hot Ice Well, North Slope of Alaska
320(1)
10.5.4 Mount Elbert Site, North Slope of Alaska
321(2)
10.5.5 Muri Coalfield Site, Qinghai-Tibet Plateau
323(1)
10.6 Subglacial Geological Sampling and Drilling
324(9)
10.6.1 Direct-Push Penetrating
325(3)
10.6.2 Conventional Rotary Drilling
328(2)
10.6.3 Electromechanical Cable-Suspended Drilling
330(3)
10.7 Deep Geological Drilling
333(6)
References
334(5)
11 Geological and Scientific Offshore Drilling and Core Sampling in Ice-Covered Waters
339(46)
11.1 Operations from Drilling Vessels
339(18)
11.1.1 Drilling from Non-Ice Class Vessels
340(1)
11.1.2 Drilling from Ice-Class Vessels
340(14)
11.1.3 Drilling from Ice-Bound Barges
354(3)
11.2 Drilling from Sea Ice and Ice Shelves
357(6)
11.3 Remotely Controlled Robotic Seabed-Drilling Rigs
363(5)
11.3.1 GBU-2-4000L and Arktika-2012 Expedition
363(2)
11.3.2 MeBo70 and Expedition PS 104
365(3)
11.4 Underwater Core Sampling
368(17)
11.4.1 Sediment Core Sampling in Arctic and Southern Oceans
368(7)
11.4.2 Core Sampling of Antarctic Subglacial Sediments
375(4)
References
379(6)
Concluding Remarks 385
Dr. Pavel G. Talalay is a Professor at the College of Construction Engineering and Director of the Institute of Polar Science and Engineering at Jilin University, Changchun, China. He holds Drilling Engineer (1984), Ph.D. (1995) and Doc. Eng. (2007) degrees in Exploration Engineering from St. Petersburg Mining University, Russia, where he has worked as Professor and Chair of the Dept. He also worked as a Guest Researcher for the Niels Bohr Institute (Copenhagen University, Denmark) (19981999). His research interests are associated with different aspects of drilling and sampling technologies in ice, permafrost and marine sediments; ice properties and dynamics of ice sheets; environmental problems in the polar regions. He has taken part in eight field expeditions in the Arctic and Antarctica, and was involved in drilling the deepest hole in ice (3769 m), at Vostok Station, Antarctica. He is the author of more than 250 publications. Currently he leads several drilling projects in theArctic and Antarctica.