Muutke küpsiste eelistusi

E-raamat: Getting Data Science Done: Managing Projects From Ideas to Products

  • Formaat: 218 pages
  • Ilmumisaeg: 26-Aug-2022
  • Kirjastus: Business Expert Press
  • Keel: eng
  • ISBN-13: 9781637422786
  • Formaat - PDF+DRM
  • Hind: 19,50 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 218 pages
  • Ilmumisaeg: 26-Aug-2022
  • Kirjastus: Business Expert Press
  • Keel: eng
  • ISBN-13: 9781637422786

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Getting Data Science Done outlines the essential stages in running successful data science projectsproviding comprehensive guidelines to help you identify potential issues and then a range of strategies for mitigating them.

Data science is a field that synthesizes statistics, computer science and business analytics to deliver results that can impact almost any type of process or organization. Data science is also an evolving technical discipline, whose practice is full of pitfalls and potential problems for managers, stakeholders and practitioners. Many organizations struggle to consistently deliver results with data science due to a wide range of issues, including knowledge barriers, problem framing, organizational change and integration with IT and engineering.

Getting Data Science Done outlines the essential stages in running successful data science projects. The book provides comprehensive guidelines to help you identify potential issues and then a range of strategies for mitigating them. The book is organized as a sequential process allowing the reader to work their way through a project from an initial idea all the way to a deployed and integrated product.
Preface ix
Acknowledgments xi
Introduction xiii
Part I Problem Framing
1(86)
Chapter 1 Getting Started
3(20)
Chapter 2 Project Parameters
23(4)
Chapter 3 Getting Buy-In
27(16)
Chapter 4 Getting Context
43(8)
Chapter 5 Getting Measurements
51(6)
Chapter 6 Consider Interventions
57(10)
Chapter 7 Dwell on Constraints
67(6)
Chapter 8 Project Focus
73(8)
Chapter 9 Getting Success Metrics
81(6)
Part II Execution
87(108)
Chapter 10 Getting Data Updates
89(6)
Chapter 11 Data Familiarity
95(6)
Chapter 12 Data Science Methods
101(6)
Chapter 13 Insights and Analytics
107(8)
Chapter 14 Pattern Discovery
115(10)
Chapter 15 Predictive Modeling
125(16)
Chapter 16 Model Context
141(8)
Chapter 17 Project Delivery
149(12)
Chapter 18 Estimating ROI
161(14)
Chapter 19 Deployment
175(12)
Chapter 20 Model Monitoring
187(8)
Conclusion 195(2)
About the Author 197(2)
Index 199
John Hawkins is an Australian data scientist with a research background in machine learning for bioinformatics. He holds positions as the Chief Scientist for Ad Tech company Playground XYZ, machine learning advisor for Health Tech start-up HealthVox.org and is an affiliate researcher with the Transitional AI Group. He has 20 years of experience in solving problems in industry and academia, delivering data science solutions for organizations in software development, banking, insurance, media, ad-tech, and bio-medical research. He holds a PhD in Computer Science from the University of Queensland, an Associate Degree in Information Technology from Southern Cross University and a Bachelor of Arts (Honors I) in Philosophy from the University of Newcastle. He has written more than 20 peer-reviewed academic articles and presented at academic and industry conferences around the world.