Series Preface |
|
ix | |
Preface |
|
xi | |
Acknowledgments |
|
xiii | |
Editor |
|
xv | |
Contributors |
|
xvii | |
|
Chapter 1 Introduction: Remote Sensing and GIS Techniques for the Detection, Surveillance, and Management of Invasive Species |
|
|
1 | (8) |
|
|
|
1 | (1) |
|
|
2 | (5) |
|
|
2 | (2) |
|
1.2.2 Geographic Information Systems |
|
|
4 | (3) |
|
|
7 | (1) |
|
|
7 | (1) |
|
|
8 | (1) |
|
|
8 | (1) |
|
Chapter 2 Obtaining Spatial Data |
|
|
9 | (20) |
|
|
|
|
9 | (1) |
|
|
9 | (3) |
|
2.3 Factors to Consider When Acquiring and Using Spatial Data |
|
|
12 | (1) |
|
2.4 Data Types: Raster and Vector |
|
|
13 | (1) |
|
2.5 Raster Data Sources and Examples |
|
|
13 | (12) |
|
2.5.1 Digital Raster Graphic |
|
|
13 | (4) |
|
2.5.2 Satellite and Aerial Imagery |
|
|
17 | (6) |
|
2.5.3 Digital Elevation Data |
|
|
23 | (2) |
|
2.6 Vector Data Sources and Examples |
|
|
25 | (1) |
|
2.7 Software for Spatial Data Visualization and Analysis |
|
|
26 | (1) |
|
|
27 | (1) |
|
|
27 | (1) |
|
|
27 | (2) |
|
Chapter 3 Population Ecology Considerations for Monitoring and Managing Biological Invasions |
|
|
29 | (30) |
|
|
|
|
|
|
30 | (1) |
|
|
30 | (1) |
|
|
31 | (3) |
|
|
32 | (1) |
|
3.3.2 Monitoring the Arrival of Biological Invaders |
|
|
33 | (1) |
|
|
34 | (3) |
|
3.4.1 Factors That Influence Establishment Success |
|
|
34 | (1) |
|
3.4.2 Monitoring the Establishment of Nonnative Species: Space-Time Population Persistence |
|
|
35 | (2) |
|
|
37 | (3) |
|
|
37 | (1) |
|
3.5.2 Estimating Invasive Species Spread |
|
|
38 | (2) |
|
3.6 Managing Biological Invasions |
|
|
40 | (2) |
|
3.7 GIS Tutorial: Estimating Spread Rates of Nonnative Species |
|
|
42 | (8) |
|
|
42 | (1) |
|
3.7.2 Calculating Distance to an Initial Outbreak Location |
|
|
43 | (1) |
|
3.7.3 Performing OLS Regression Analysis |
|
|
43 | (3) |
|
3.7.4 Understanding Residuals |
|
|
46 | (1) |
|
3.7.5 Testing for Spatial Autocorrelation |
|
|
46 | (1) |
|
3.7.6 Calculating Temporal Spread Rates |
|
|
47 | (2) |
|
3.7.7 Calculating Regional Spread Rates |
|
|
49 | (1) |
|
|
50 | (1) |
|
|
50 | (1) |
|
|
50 | (1) |
|
|
51 | (1) |
|
|
51 | (8) |
|
Chapter 4 Integrating GPS, GIS, and Remote Sensing Technologies with Disease Management Principles to Improve Plant Health |
|
|
59 | (32) |
|
|
|
|
|
|
|
|
|
|
60 | (1) |
|
|
60 | (1) |
|
4.3 Disease Management Principles |
|
|
61 | (5) |
|
4.3.1 Disease Management Principle 1: Exclusion |
|
|
61 | (1) |
|
|
62 | (1) |
|
4.3.1.2 Seed/Plant Certification Programs (y0) |
|
|
62 | (1) |
|
4.3.2 Disease Management Principle 2: Avoidance (y0 and/or t) |
|
|
62 | (1) |
|
4.3.2.1 Avoidance of Disease Risk in Space (t) |
|
|
62 | (1) |
|
4.3.2.2 Avoidance of Disease Risk in Time (t) |
|
|
62 | (1) |
|
4.3.3 Disease Management Principle 3: Eradication (y0) |
|
|
63 | (1) |
|
4.3.3.1 Roguing of Diseased Plants (y0) |
|
|
63 | (1) |
|
4.3.3.2 Removal and Burial of Crop Residues/Debris (y0) |
|
|
64 | (1) |
|
4.3.3.3 Soil Fumigation (y0) |
|
|
64 | (1) |
|
4.3.4 Disease Management Principle 4: Protection (y0 and/or r) |
|
|
64 | (1) |
|
4.3.4.1 Use of Chemical Barriers to Protect Crops (y0 and r) |
|
|
64 | (1) |
|
4.3.5 Disease Management Principle 5: Host Resistance |
|
|
65 | (1) |
|
4.3.5.1 Resistance That Reduces Initial Inoculum (y0) |
|
|
65 | (1) |
|
4.3.6 Disease Management Principle 6: Therapy (y0 and Sometimes r) |
|
|
65 | (1) |
|
4.4 Case Study: Asian Soybean Rust |
|
|
66 | (2) |
|
4.5 Case Study: Ash Yellows Disease of Green Ash |
|
|
68 | (3) |
|
4.6 Case Study: Plum Pox Virus of Prunus spp |
|
|
71 | (2) |
|
4.7 Case Study: Moko Disease of Banana |
|
|
73 | (3) |
|
4.8 Case Study: Stewart's Disease of Corn |
|
|
76 | (2) |
|
4.9 Case Study: Gray Leaf Spot of Corn |
|
|
78 | (1) |
|
4.10 Case Study: Bean Pod Mottle Virus of Soybean |
|
|
79 | (5) |
|
4.11 GIS Tutorial: Moko Disease in Amazon Region of Brazil |
|
|
84 | (3) |
|
4.11.1 Saving Chapter 4 Files to Your Computer |
|
|
84 | (1) |
|
4.11.2 Opening Data in ArcMap |
|
|
84 | (1) |
|
4.11.3 Changing Map Symbology |
|
|
84 | (1) |
|
4.11.4 Creating and Printing Map Layouts |
|
|
85 | (2) |
|
|
87 | (1) |
|
|
88 | (1) |
|
|
88 | (3) |
|
Chapter 5 Mapping Actual and Predicted Distribution of Pest Animals and Weeds in Australia |
|
|
91 | (38) |
|
|
|
|
|
|
92 | (1) |
|
|
93 | (2) |
|
|
95 | (3) |
|
5.4 Previous Mapping Initiatives |
|
|
98 | (1) |
|
|
99 | (1) |
|
5.6 Predicting Invasive Species Distributions |
|
|
100 | (3) |
|
|
103 | (10) |
|
5.7.1 Agreed Data Attributes and Standards |
|
|
104 | (1) |
|
5.7.2 Field Manuals for Monitoring |
|
|
104 | (1) |
|
5.7.3 Consistent Data Collection Methods/Protocol |
|
|
104 | (1) |
|
5.7.4 Collection, Collation, and Reporting of Information |
|
|
105 | (1) |
|
5.7.4.1 Geographic Information Systems Tool |
|
|
105 | (2) |
|
5.7.4.2 Stepwise Data Collection and Collation |
|
|
107 | (3) |
|
5.7.4.3 Data Consolidation |
|
|
110 | (1) |
|
5.7.4.4 Data Aggregation and Scaling-Up |
|
|
110 | (1) |
|
5.7.4.5 Climate/Habitat Matching Methods |
|
|
111 | (1) |
|
|
112 | (1) |
|
5.7.4.7 Land-Use Classifications |
|
|
112 | (1) |
|
|
113 | (7) |
|
5.8.1 Challenges for Large-Scale Mapping and Monitoring Efforts |
|
|
113 | (1) |
|
5.8.2 Outcomes of Australian Invasive Species Monitoring Efforts |
|
|
114 | (1) |
|
5.8.2.1 Reporting Single Attribute Data |
|
|
114 | (1) |
|
5.8.2.2 Multiple Attribute Maps |
|
|
114 | (1) |
|
5.8.2.3 Reporting Multiple Species Data |
|
|
114 | (1) |
|
5.8.2.4 Data Aggregation and Scaling-Up: Implications |
|
|
114 | (1) |
|
5.8.2.5 Reporting Predictive Model Outputs Using Habitat and Climate Suitability |
|
|
114 | (2) |
|
5.8.3 Limitations of Methods |
|
|
116 | (1) |
|
5.8.3.1 Data Collation and Reporting |
|
|
116 | (2) |
|
5.8.3.2 Climate/Habitat Matching: Potential Distribution Prediction Models |
|
|
118 | (1) |
|
5.8.3.3 Habitat Matching Using Land Use Data |
|
|
119 | (1) |
|
|
120 | (1) |
|
5.9.1 Reporting at the National Level |
|
|
120 | (1) |
|
5.9.2 Way Forward for Invasive Species Monitoring and Reporting in Australia |
|
|
121 | (1) |
|
|
121 | (1) |
|
|
122 | (3) |
|
5.A.1 Monitoring Protocol for Extent, Distribution, and Abundance of Invasive Species |
|
|
122 | (1) |
|
5.A.1.1 Step 1 Species Occurrence |
|
|
122 | (1) |
|
5.A.1.2 Step 2 Distribution: Spatial Pattern |
|
|
122 | (1) |
|
5.A.1.3 Step 3 Abundance: Relative Numbers |
|
|
122 | (1) |
|
|
122 | (1) |
|
5.A.1.5 Step 5 Data Quality |
|
|
123 | (1) |
|
5.A.2 Classes for the Occurrence, Distribution, and Density Attributes for Pest Animals and Weeds (Modified from Queensland Government's Pest Survey Group) |
|
|
123 | (2) |
|
|
125 | (4) |
|
Chapter 6 Use of GIS Applications to Combat the Threat of Emerging Virulent Wheat Stem Rust Races |
|
|
129 | (30) |
|
|
|
|
130 | (1) |
|
|
130 | (1) |
|
6.3 Significance of the Ug99 Lineage (What Is Special about Ug99?) |
|
|
131 | (4) |
|
6.3.1 Basic Biology of Ug99 |
|
|
131 | (1) |
|
|
132 | (1) |
|
6.3.3 Resistance Mechanisms and Virulence of Ug99 |
|
|
133 | (2) |
|
6.4 GIS Applications and Ug99 |
|
|
135 | (8) |
|
6.4.1 GIS-Based Surveillance and Monitoring Systems |
|
|
135 | (1) |
|
6.4.2 Where Is Ug99?---Known Distribution and Range Expansion of Stem Rust (Ug99 Lineage) |
|
|
136 | (1) |
|
|
137 | (6) |
|
6.5 Deposition/Colonization Factors |
|
|
143 | (5) |
|
|
144 | (1) |
|
6.5.2 Susceptibility of Wheat Cultivars |
|
|
145 | (1) |
|
6.5.3 Crop Calendars/Crop Growth Stage |
|
|
145 | (1) |
|
6.5.4 Climate/Environment |
|
|
146 | (2) |
|
|
148 | (1) |
|
|
148 | (1) |
|
|
148 | (1) |
|
6.7 Challenges/Future Activities |
|
|
149 | (4) |
|
|
153 | (1) |
|
|
154 | (5) |
|
Chapter 7 Online Aerobiology Process Model |
|
|
159 | (8) |
|
|
|
|
159 | (1) |
|
|
160 | (1) |
|
7.3 Principles of an Aerobiology Process Model |
|
|
160 | (2) |
|
7.4 Configuration of the Aerobiology Process Model |
|
|
162 | (1) |
|
7.5 Online Simulation of the Aerobiology Process Model |
|
|
163 | (3) |
|
|
166 | (1) |
|
|
166 | (1) |
|
|
166 | (1) |
|
Chapter 8 Site-Specific Management of Green Peach Aphid, Myzus persicae (Sulzer) |
|
|
167 | (24) |
|
|
|
|
|
157 | (11) |
|
|
168 | (6) |
|
|
174 | (12) |
|
8.3.1 Exercise 1: Describe the Spatiotemporal Colonization Patterns of M. persicae in Seed Potato |
|
|
174 | (1) |
|
8.3.1.1 Description of Dataset |
|
|
175 | (1) |
|
8.3.1.2 Assessing Spatial Autocorrelation Using Semivariograms in GS+ |
|
|
176 | (3) |
|
8.3.1.3 Plot the Data from the Dataset in ArcMap |
|
|
179 | (3) |
|
8.3.1.4 Discussion of Observed Colonization Patterns |
|
|
182 | (1) |
|
8.3.2 Exercise 2: Using the HYSPLIT Model to Determine If the Wind Vectors at Specific Dates Provided a Significant Risk of Aphid Immigration into the Red River Valley |
|
|
183 | (1) |
|
8.3.2.1 Using HYSPLIT to Examine LLJ to Facilitate Movement of Aphids into the Red River Valley |
|
|
183 | (3) |
|
8.3.2.2 Discussion of HYSPLIT Results |
|
|
186 | (1) |
|
|
186 | (1) |
|
|
186 | (5) |
|
Chapter 9 Analysis of the 2002 Equine West Nile Virus Outbreak in South Dakota Using GIS and Spatial Statistics |
|
|
191 | (16) |
|
|
|
|
|
192 | (1) |
|
|
192 | (1) |
|
|
193 | (1) |
|
9.3.1 Mapping WNv Cases in a GIS |
|
|
193 | (1) |
|
|
194 | (7) |
|
9.4.1 Smoothed Maps of Disease Risk |
|
|
194 | (3) |
|
9.4.2 Spatial Autocorrelation Analysis |
|
|
197 | (1) |
|
9.4.3 Spatiotemporal Clustering |
|
|
198 | (3) |
|
9.5 Summary and Conclusions |
|
|
201 | (1) |
|
9.6 Step-by-Step Exercise Using GeoDa 0.9.5 Software |
|
|
202 | (3) |
|
9.6.1 Opening a Shapefile in GeoDa |
|
|
202 | (1) |
|
9.6.2 Computing a Spatial Weights File |
|
|
203 | (1) |
|
9.6.3 Creating a Map of Raw Disease Rates |
|
|
203 | (1) |
|
9.6.4 Creating a Map of Disease Rates Using Empirical Bayes Smoothing |
|
|
203 | (1) |
|
9.6.5 Adding Calculated Rates to the Attribute Table |
|
|
203 | (1) |
|
9.6.6 Computing the Global Moran's I Index of Spatial Autocorrelation |
|
|
204 | (1) |
|
9.6.7 Computing the Local Moran's I Index of Spatial Autocorrelation |
|
|
204 | (1) |
|
|
205 | (2) |
|
Chapter 10 Designing a Local-Scale Microsimulation of Lesser Grain Borer Population Dynamics and Movements |
|
|
207 | (26) |
|
|
|
|
|
|
|
208 | (1) |
|
|
208 | (4) |
|
10.2.1 Lesser Grain Borer Economic Impact and Management |
|
|
209 | (2) |
|
10.2.2 Behavior and Ecology outside Grain Storage |
|
|
211 | (1) |
|
|
212 | (2) |
|
10.3.1 Agent-Based Simulation and Modeling |
|
|
212 | (1) |
|
|
213 | (1) |
|
|
214 | (14) |
|
10.4.1 Overview: Creating a NetLogo Model |
|
|
214 | (1) |
|
|
215 | (1) |
|
10.4.2.1 Setup and Go Buttons and Energy Switch |
|
|
215 | (1) |
|
10.4.2.2 Turtle Variables and Setup Procedure |
|
|
216 | (2) |
|
10.4.2.3 Defining Initial Variables with Sliders |
|
|
218 | (1) |
|
|
219 | (1) |
|
10.4.2.5 Bug Movement, Eating, Reproduction, and Death Procedures |
|
|
220 | (2) |
|
10.4.2.6 Setting Up Gain-from-Grain, Bug-Birth-Energy Procedures, and Control Sliders |
|
|
222 | (1) |
|
10.4.2.7 Forest Regrowth Procedure and Control Slider |
|
|
222 | (1) |
|
10.4.2.8 Show Energy and Display Labels |
|
|
223 | (2) |
|
|
225 | (1) |
|
10.4.3.1 Create Plot Window and Monitors |
|
|
226 | (2) |
|
|
228 | (5) |
|
Chapter 11 Geographic Information Systems in Corn Rootworm Management |
|
|
233 | (22) |
|
|
|
|
|
|
|
233 | (1) |
|
|
234 | (1) |
|
11.3 Materials and Data Collection |
|
|
235 | (1) |
|
11.3.1 Field and Insect Trap Locations |
|
|
235 | (1) |
|
11.3.2 System Requirements |
|
|
235 | (1) |
|
11.4 Getting Started with ArcGIS™ |
|
|
236 | (4) |
|
11.4.1 Importing Latitude-Longitude Trap Data |
|
|
237 | (1) |
|
11.4.2 Symbolizing Map Layers |
|
|
238 | (2) |
|
11.4.3 Coordinate Systems and ESRI® Shapefiles |
|
|
240 | (1) |
|
11.5 Analysis of Adult CRW Population and Distribution |
|
|
240 | (11) |
|
11.5.1 Spatial Autocorrelation, Moran's I |
|
|
241 | (2) |
|
11.5.2 Interpolation, Inverse Distance Weighting |
|
|
243 | (2) |
|
11.5.3 Comparing CRW Population with Soil Texture |
|
|
245 | (6) |
|
|
251 | (1) |
|
|
252 | (1) |
|
|
252 | (3) |
|
Chapter 12 Improving Surveillance for Invasive Plants: A GIS Toolbox for Surveillance Decision Support |
|
|
255 | (22) |
|
|
|
|
256 | (1) |
|
|
256 | (2) |
|
|
258 | (12) |
|
12.3.1 Design Elements of the Toolbox |
|
|
258 | (1) |
|
12.3.2 Modeling Seed Dispersal |
|
|
259 | (3) |
|
12.3.3 Wind Dispersal Kernel |
|
|
262 | (1) |
|
12.3.3.1 Modeling the Influence of Wind Direction and Strength |
|
|
262 | (1) |
|
12.3.3.2 Modeling Terrain Influences Wind Dispersal |
|
|
263 | (1) |
|
12.3.3.3 Modeling Dispersal along Roads and Rivers |
|
|
264 | (1) |
|
12.3.3.4 Multiple Dispersal Events |
|
|
265 | (1) |
|
12.3.4 Modeling Life History |
|
|
265 | (1) |
|
12.3.5 Simulating Surveillance |
|
|
266 | (1) |
|
12.3.6 Parameterization for Chilean Needle Grass |
|
|
267 | (1) |
|
12.3.6.1 Potential Habitat for Invasion |
|
|
267 | (1) |
|
12.3.6.2 Dispersal Parameters |
|
|
267 | (1) |
|
12.3.6.3 Life History Parameters |
|
|
268 | (1) |
|
12.3.6.4 Evaluating Surveillance |
|
|
269 | (1) |
|
12.3.6.5 Evaluating Eradication |
|
|
270 | (1) |
|
12.4 Results and Discussion |
|
|
270 | (4) |
|
12.4.1 Evaluating Surveillance |
|
|
270 | (3) |
|
12.4.2 Evaluating Eradication |
|
|
273 | (1) |
|
12.4.3 Implications for Management of CNG |
|
|
273 | (1) |
|
|
274 | (1) |
|
|
274 | (3) |
|
Chapter 13 Tracking Invasive Weed Species in Rangeland Using Probability Functions to Identify Site-Specific Boundaries: A Case Study Using Yellow Starthistle (Centaurea solstitialis L.) |
|
|
277 | (24) |
|
|
|
|
|
|
278 | (1) |
|
|
278 | (1) |
|
|
278 | (1) |
|
|
279 | (6) |
|
13.3.1 Model of Development |
|
|
279 | (2) |
|
13.3.2 Productivity Model Components |
|
|
281 | (2) |
|
13.3.3 Spatial Network Models |
|
|
283 | (2) |
|
|
285 | (13) |
|
|
285 | (1) |
|
13.4.1.1 Additional Software Required for the Exercise |
|
|
285 | (1) |
|
13.4.2 Topographic Correlates of the Site (Slope, Aspect, and Sunlight Difference between Spring and Summer "Sundiff") |
|
|
285 | (1) |
|
13.4.2.1 Preliminary Steps |
|
|
286 | (1) |
|
13.4.2.2 Steps for Importing and Calculating Slope, Aspect, and Sun Angle Differencing |
|
|
287 | (2) |
|
13.4.3 Developing Vegetation Indices (NDVI and TSAVII) from Landsat Images |
|
|
289 | (1) |
|
13.4.3.1 Atmospheric Correction |
|
|
289 | (3) |
|
13.4.3.2 Georectification |
|
|
292 | (1) |
|
13.4.3.3 Vegetation Index |
|
|
293 | (2) |
|
13.4.4 Productivity Modeling with the Logit Regression Module |
|
|
295 | (1) |
|
13.4.4.1 Specifying a Sampling Scheme |
|
|
296 | (1) |
|
|
296 | (2) |
|
|
298 | (1) |
|
|
298 | (3) |
|
Chapter 14 Using GIS to Map and Manage Weeds in Field Crops |
|
|
301 | (19) |
|
|
|
|
301 | (1) |
|
|
302 | (2) |
|
14.3 Materials and Methods |
|
|
304 | (10) |
|
14.3.1 Uploading Images into ERDAS |
|
|
306 | (1) |
|
14.3.2 Unsupervised Image Classification and Accuracy Assessment |
|
|
306 | (3) |
|
14.3.3 Supervised Image Classification in ERDAS and Accuracy Assessment |
|
|
309 | (5) |
|
|
314 | (2) |
|
14.4.1 Crop Health Assessment |
|
|
314 | (1) |
|
14.4.2 Weed Detection by Supervised Classification |
|
|
315 | (1) |
|
14.4.3 On-Farm Use of GIS-Based Weed Mapping |
|
|
315 | (1) |
|
|
316 | (1) |
|
|
316 | (1) |
|
|
317 | (3) |
|
Chapter 15 Adapting Geostatistics to Analyze Spatial and Temporal Trends in Weed Populations |
|
|
319 | |
|
|
|
|
320 | (1) |
|
|
320 | (1) |
|
|
321 | (1) |
|
|
322 | (1) |
|
15.4.1 Experimental Field |
|
|
322 | (1) |
|
|
322 | (1) |
|
15.5 Exploratory Data Analysis |
|
|
323 | (7) |
|
|
323 | (1) |
|
|
324 | (1) |
|
|
325 | (5) |
|
|
330 | (1) |
|
|
330 | (1) |
|
|
330 | (1) |
|
|
330 | (1) |
|
|
330 | (4) |
|
|
330 | (1) |
|
|
330 | (1) |
|
15.7.3 Estimating Trend with Linear Regressions |
|
|
331 | (3) |
|
15.8 Empirical Semivariograms |
|
|
334 | (1) |
|
|
334 | (1) |
|
|
335 | (1) |
|
|
335 | (1) |
|
15.9 Semivariogram Model Fitting |
|
|
335 | (11) |
|
|
335 | (5) |
|
|
340 | (1) |
|
|
340 | (6) |
|
15.10 Analysis of Variogram Parameters |
|
|
346 | (8) |
|
|
346 | (1) |
|
|
346 | (8) |
|
|
354 | (1) |
|
|
354 | (2) |
|
|
354 | (2) |
|
|
356 | (1) |
|
|
356 | (1) |
|
15.12 Cross-Semivariograms and Cokriging |
|
|
356 | (7) |
|
|
356 | (4) |
|
15.12.2 Cross-Semivariograms |
|
|
360 | (1) |
|
|
360 | (3) |
|
|
363 | (6) |
|
15.13.1 Prediction of Weed Means |
|
|
363 | (1) |
|
15.13.2 Prediction of Weed Locations |
|
|
363 | (6) |
|
15.14 Summary: Using Geostatistical Information for Decision Making |
|
|
369 | (1) |
|
|
369 | (1) |
|
|
370 | (3) |
|
Chapter 16 Using GIS to Investigate Weed Shifts after Two Cycles of a Corn/Soybean Rotation |
|
|
373 | (32) |
|
|
|
|
374 | (1) |
|
|
374 | (1) |
|
16.3 Materials and Methods |
|
|
375 | (12) |
|
16.3.1 Minimum Recommended System Requirements to Reproduce These Analyses |
|
|
375 | (1) |
|
|
375 | (1) |
|
16.3.3 Analyses Method Overview |
|
|
375 | (1) |
|
16.3.4 Aggregating Data in MS Excel |
|
|
376 | (1) |
|
16.3.4.1 Aggregating Weed Densities by Year |
|
|
376 | (1) |
|
16.3.4.2 Weed Density and Species Change Calculations |
|
|
377 | (1) |
|
16.3.4.3 Data for Estimating Direction Distribution |
|
|
378 | (2) |
|
|
380 | (1) |
|
16.3.5.1 Creating Layers Using ArcMap™ |
|
|
380 | (3) |
|
16.3.5.2 Creating Data Subsets |
|
|
383 | (1) |
|
16.3.5.3 Data Exploration in ArcMap™ |
|
|
384 | (3) |
|
|
387 | (15) |
|
16.4.1 Spatial Data Exploration |
|
|
387 | (5) |
|
16.4.2 Creating Interpretive Maps |
|
|
392 | (1) |
|
16.4.2.1 Spatial Data Interpolation Using an Ordinary Kriging Method |
|
|
393 | (4) |
|
16.4.2.2 Spatial Data Interpolation Using an Inverse Distance Weighting Method |
|
|
397 | (5) |
|
|
402 | (1) |
|
|
402 | (1) |
|
|
403 | (2) |
|
Chapter 17 Creating and Using Weed Maps for Site-Specific Management |
|
|
405 | (14) |
|
|
|
|
|
|
405 | (1) |
|
|
406 | (2) |
|
17.2.1 Obtaining Weed Spatial Distribution Information |
|
|
406 | (1) |
|
17.2.2 Determining Economic Optimal Herbicide Rate Based on Weed Spatial Distribution |
|
|
406 | (2) |
|
17.2.3 Developing the Prescription Map |
|
|
408 | (1) |
|
17.3 Materials and Methods |
|
|
408 | (3) |
|
17.3.1 General Procedures |
|
|
408 | (1) |
|
17.3.2 Development of a Prescription Map |
|
|
409 | (2) |
|
17.3.3 Collecting and Analyzing Data |
|
|
411 | (1) |
|
17.4 Results and Discussion |
|
|
411 | (6) |
|
17.4.1 Weed Species Composition and Herbicide Usage |
|
|
411 | (2) |
|
|
413 | (4) |
|
|
417 | (1) |
|
|
417 | (1) |
|
|
417 | (2) |
Index |
|
419 | |