Muutke küpsiste eelistusi

E-raamat: Global Dynamics of the Earth: Applications of Viscoelastic Relaxation Theory to Solid-Earth and Planetary Geophysics

  • Formaat: PDF+DRM
  • Ilmumisaeg: 27-May-2016
  • Kirjastus: Springer
  • Keel: eng
  • ISBN-13: 9789401775526
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 67,91 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Ilmumisaeg: 27-May-2016
  • Kirjastus: Springer
  • Keel: eng
  • ISBN-13: 9789401775526
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This volume opens up new perspectives on the physics of the Earth’s interior and planetary bodies for graduate students and researchers working in the fields of geophysics, planetary sciences and geodesy. It looks at our planet in an integrated fashion, linking the physics of its interior to geophysical and geodetic techniques that record, over a broad spectrum of spatial wavelengths and time scales, the ongoing modifications in the shape and gravity field of the planet. Basic issues related to the rheological properties of the Earth and to its slow deformation are considered, in both mathematical and physical terms, within the framework of an analytical relaxation theory. Fundamentals of this theory are developed in the first two Chapters. Chapters 3-9 deal with a wide range of applications, ranging from changes in the Earth’s rotation to post-seismic deformation and from sea-level variations induced by post-glacial rebound to tidal deformation of icy moons of the Solar System. This Second Edition improves substantially our formalism implementing compressibility in viscoelastic relaxation. Chapter 5 now contains new developments in the physics of the gravitational effects of large earthquakes at subduction zones, made possible by new gravity data from space missions. The new Chapter 9 of this Second Edition on deformation and stresses of icy moons enlarges the applications of the book to Planetology, dealing with the additional complications in the theory of viscoelastic relaxation introduced by the shallow low-viscosity zones and inviscid water layers of the moons of Jupiter and Saturn.
1 Viscoelastic Relaxation Theory, Momentum and Poisson Equations
1(52)
1.1 Rheological Models
1(2)
1.2 Mathematics
3(10)
1.2.1 The Linear Maxwell Solid
7(2)
1.2.2 Compressible and Incompressible Earth's Models
9(2)
1.2.3 The Correspondence Principle
11(2)
1.3 Expansion in Spherical Harmonics
13(5)
1.3.1 Volume Changes and Surface Forces
15(1)
1.3.2 Spheroidal and Toroidal Deformations
16(2)
1.4 Spheroidal Deformations
18(2)
1.5 Toroidal Deformations
20(1)
1.6 Boundary Conditions
21(10)
1.6.1 The Earth's Surface
21(4)
1.6.2 Chemical Boundaries
25(1)
1.6.3 Core-Mantle Boundary
26(5)
1.7 Elastic and Viscoelastic Solutions
31(5)
1.7.1 Load and Tidal Love Numbers
33(1)
1.7.2 Application of the Correspondence Principle
34(2)
1.8 The Relaxation Spectrum
36(6)
1.8.1 Modal and Non-modal Contributions
41(1)
1.9 The Complex Contour Integration
42(1)
1.10 Point Sources
43(10)
1.10.1 Point Loads
43(2)
1.10.2 Fault Discontinuities
45(5)
References
50(3)
2 Incompressible and Compressible Analytical Viscoelastic Models
53(34)
2.1 Analytical Solution
53(1)
2.2 Green Functions for Incompressible and Compressible Stratified Viscoelastic Earth's Models
53(4)
2.2.1 Core-Mantle Boundary (CMB) Matrix
54(1)
2.2.2 Propagators and Fundamental Matrices
55(2)
2.3 Layered Incompressible Models
57(5)
2.4 Relaxation Times for Incompressible Earth's Models
62(6)
2.5 The Self-compressed, Compressible Sphere
68(11)
2.5.1 The Analytical Solution
70(4)
2.5.2 The Relaxation Spectrum of the Self-compressed Compressible Sphere
74(2)
2.5.3 The Compositional Modes
76(3)
2.6 Viscoelastic Perturbations Due to Surface Loading
79(2)
2.7 Toroidal Solution
81(1)
2.8 Time Dependent Loading Love Numbers
82(5)
References
84(3)
3 Rotational Dynamics of Viscoelastic Planets: Linear Theory
87(62)
3.1 Introduction to Earth's Rotation
87(4)
3.1.1 Liouville Equations
90(1)
3.2 MacCullagh's Formula
91(6)
3.2.1 Inertia Perturbations Due to Changes in the Centrifugal Potential
94(3)
3.3 Linearized Liouville Equations
97(2)
3.4 The Concept of True Polar Wander (TPW)
99(4)
3.4.1 Reference Frame
101(1)
3.4.2 Adjustment of the Equatorial Bulge
102(1)
3.5 Developments of Linearized Rotation Theories
103(12)
3.5.1 Comparison Between Different Rotation Theories
108(1)
3.5.2 Omission of the M0 Rotation Mode
109(3)
3.5.3 Analytical Formula for the M0 Rotation Mode
112(2)
3.5.4 Unification of the Different Approaches
114(1)
3.6 Non-hydrostatic Bulge Contribution
115(3)
3.7 Readjustment of the Rotational Bulge
118(3)
3.8 Compressible and Incompressible Readjustment of the Equatorial Bulge
121(4)
3.9 Long-Term Behavior of the Rotation Equation
125(7)
3.9.1 Theory for Rotation Changes Due to Mantle Convection
127(5)
3.10 Time-Dependent Inertia Due to Mantle Convection
132(6)
3.10.1 TPW Simulations
134(4)
3.11 Polar Wander on the Earth, Moon, Mars and Venus
138(11)
References
144(5)
4 TPW and J2 Induced by Ice-Sheet Loading
149(40)
4.1 TPW and J2 from PGR
149(2)
4.2 The Inference of Mantle Viscosity from TPW and J2 Data
151(2)
4.3 Loading
153(3)
4.4 Mantle Viscosity
156(15)
4.4.1 Variations in Depth of the Two-Layer Mantle Viscosity Profile
167(1)
4.4.2 Upper Mantle Viscosities Lower Than 10 21 Pa s
168(3)
4.5 Ice Age Cycles and the Polar Wander Path: Lithospheric and Mantle Rheology
171(4)
4.6 Ice Age True Polar Wander in a Compressible and Non-hydrostatic Earth
175(14)
4.6.1 The Role of Mantle Heterogeneities
178(7)
References
185(4)
5 Detection of the Time-Dependent Gravity Field and Global Change
189(36)
5.1 Changes in the Long-Wavelength Geoid Components from Satellite Laser Ranging Techniques
189(6)
5.2 Trade-Off Between Lower Mantle Viscosity and Present-Day Mass Imbalance in Antarctica and Greenland
195(7)
5.3 Time Dependent Gravity Field from the GRACE Space Mission: The Importance of PGR Models
202(8)
5.3.1 Global Vertical and Horizontal Displacements from PGR
206(4)
5.4 The 2004 Sumatran and 2011 Tohoku-Oki Giant Earthquakes
210(15)
5.4.1 Modeling the 2004 Sumatran Earthquake
211(3)
5.4.2 The GRACE Data
214(1)
5.4.3 Constraining the 2004 Sumatran Earthquake
215(3)
5.4.4 The 2011 Tohoku-Oki Earthquake: Gravitational Seismology
218(3)
References
221(4)
6 Sea-Level Changes
225(32)
6.1 The Issue of Sea-Level Change, a Present-Day Concern
225(2)
6.2 Sea-Level Variations, Geoid and Gravity Anomalies Due To Pleistocene Deglaciation
227(8)
6.2.1 Mathematical Formulation
228(3)
6.2.2 Sea-Level Variations, the Geoid and Free-Air Gravity Anomalies
231(4)
6.3 Glacial Isostatic Adjustment (GIA) Versus Tectonic Processes: The Example of the Mediterranean Sea
235(7)
6.4 Sea-Level Fluctuations Induced by Polar Wander
242(4)
6.5 Sea-Level Changes Induced by Subduction
246(11)
6.5.1 Sea-Level Variations, Geoid Anomalies and The Long-Wavelength Dynamic Topography
247(2)
6.5.2 A Single Sinking Slab
249(2)
6.5.3 A Distribution of Slabs
251(3)
References
254(3)
7 TPW Driven by Subduction: Non-linear Rotation Theory
257(12)
7.1 Formulation of the Non-linear Rotation Problem
257(8)
7.2 Polar Wander Velocity for a Distribution of Slabs
265(4)
References
267(2)
8 Post-seismic Deformation
269(24)
8.1 Global Post-seismic Deformation
269(8)
8.2 Post-seismic Deformation for Shallow Earthquakes
277(16)
8.2.1 The Umbria-Marche (1997) Earthquake
277(7)
8.2.2 The Irpinia (1980) Earthquake
284(5)
References
289(4)
9 Icy Moons
293(44)
9.1 Diurnal and Non-synchronous Rotation (NSR) Stresses Acting on Europa's Surface
293(3)
9.2 The Tidal Potential
296(5)
9.3 The Interior of Europa
301(1)
9.4 The Impulse Tidal Response of Europa
302(8)
9.4.1 The Impulse Response of Interior Models with a Global Subsurface Ocean
302(3)
9.4.2 Boundary Conditions
305(2)
9.4.3 Application to Icy Moons I: Normal Modes
307(1)
9.4.4 Application to Icy Moons II: Impulse Response to Tidal Forces
307(3)
9.5 Radial Deformation at the Surface
310(3)
9.6 Stresses at the Surface of Europa
313(9)
9.6.1 Diurnal Stresses at the Surface
313(5)
9.6.2 NSR Stresses at the Surface
318(4)
9.7 Stress Patterns on Europa's Surface
322(7)
9.8 Morphology of the Europa Icy Moon
329(8)
References
332(5)
Appendix A Dyads and Vector Identities 337(4)
Appendix B Analytical Functions 341(6)
Appendix C Icy Moons 347(8)
Index 355
Prof. Roberto Sabadini is Full Professor of Solid Earth Geophysics at the Department of Earth Sciences, University of Milano, Italy. His focus is on the role of Earths viscoelasticity, particularly within the frame of an analytical approach, applied to a variety of geophysical phenomena, from postglacial rebound to those related to mantle density anomalies, from secular polar motion to post-seismic deformation. This modelling looks at the Earth in an integrated fashion and links the physics of its interior with the newly acquired gravity and deformation data from space geodesy. Prof. Dr. Bert Vermeersen is Full Professor of Planetary Exploration at the Faculty of Aerospace Engineering and at the Faculty of Civil Engineering and Geosciences of Delft University of Technology in The Netherlands. He is also a Senior Researcher on sea level change at the Royal Netherlands Institute for Sea Research NIOZ in The Netherlands. Prof. Vermeersen's focus of his planetary exploration research is on the moons of Jupiter and Saturn. At NIOZ his research concentrates on sea level change for both the present day and for geological periods. Dr. Gabriele Cambiotti is Researcher at the Department of Earth Sciences at the University of Milano, Italy, where he teaches the courses of Seismology and Mathematical Methods for Geophysics. His research focuses on viscoelastodynamics and the modeling of glacial isostatic adjustment, mantle convection and seismic cycle. He studies basic physical and mathematical issues related to viscoelastic deformation. Long term Earths rotation and gravitational seismology are also keys in his research.