Muutke küpsiste eelistusi

E-raamat: Global Kinetic Model for Electron Radiation Belt Formation and Evolution

  • Formaat: PDF+DRM
  • Sari: Springer Theses
  • Ilmumisaeg: 25-Mar-2015
  • Kirjastus: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Keel: eng
  • ISBN-13: 9783662466513
  • Formaat - PDF+DRM
  • Hind: 110,53 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Sari: Springer Theses
  • Ilmumisaeg: 25-Mar-2015
  • Kirjastus: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Keel: eng
  • ISBN-13: 9783662466513

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This thesis focuses on the construction and application of an electron radiation belt kinetic model including various adiabatic and non-adiabatic processes. The terrestrial radiation belt was discovered over 50 years ago and has received a resurgence of interest in recent years. The main drivers of radiation belt research are the fundamental science questions surrounding its complex and dramatic dynamics and particularly its potential hazards posed to space-borne systems. The establishment of physics-based radiation belt models will be able to identify the contributions of various mechanisms, forecast the future radiation belt evolution and then mitigate its adverse space weather effects.

Dr. Su is now an Professor works in Department of Geophysics and Planetary Sciences, University of Science and Technology of China, Hefei, China.

1 Background and Motivation
1(12)
1.1 Magnetosphere
1(1)
1.2 Electron Radiation Belt Dynamics
1(3)
1.2.1 Response to Geomagnetic Storms
2(1)
1.2.2 Response to Substorms
2(1)
1.2.3 Response to Solar Cycles and Seasons
3(1)
1.3 Basic Theory
4(5)
1.3.1 Single-Particle Orbit Theory
4(3)
1.3.2 Kinetic Theory
7(2)
1.4 Research Contents
9(4)
References
10(3)
2 Local Diffusion
13(28)
2.1 Introduction
13(1)
2.2 Local Radiation Belt Diffusion Model
14(7)
2.2.1 Background Magnetic Field
14(1)
2.2.2 Basic Equation
14(2)
2.2.3 Diffusion Coefficients
16(3)
2.2.4 Numerical Method
19(2)
2.3 Idealized Simulations
21(10)
2.3.1 Chorus
21(1)
2.3.2 Hiss
22(5)
2.3.3 EMIC
27(4)
2.4 Conclusions and Discussions
31(10)
References
35(6)
3 Radial Diffusion
41(22)
3.1 Introduction
41(1)
3.2 Global Radiation Belt Diffusion Model STEERB
42(7)
3.2.1 Background Magnetic Field
42(1)
3.2.2 Basic Equation
42(2)
3.2.3 Diffusion Coefficients
44(3)
3.2.4 Numerical Method
47(2)
3.3 Idealized Simulations
49(7)
3.3.1 Steady State
49(1)
3.3.2 Storm-Time Dynamics
49(7)
3.4 Conclusions and Discussions
56(7)
References
58(5)
4 Adiabatic Transport
63(24)
4.1 Introduction
63(1)
4.2 Improved Global Radiation Belt Diffusion Model STEERB
64(3)
4.2.1 Background Magnetic Field
64(1)
4.2.2 Basic Equation
64(1)
4.2.3 Diffusion Coefficients
65(1)
4.2.4 Numerical Method
65(2)
4.3 Idealized Simulations
67(9)
4.3.1 Fully Adiabatic Transport
67(3)
4.3.2 Combination of Adiabatic and Nonadiabatic Processes
70(6)
4.4 Application
76(5)
4.4.1 Background
76(2)
4.4.2 Observations
78(1)
4.4.3 Simulations
78(3)
4.5 Conclusions and Discussions
81(6)
References
84(3)
5 Magnetospheric Convection
87(14)
5.1 Introduction
87(1)
5.2 Global Radiation Belt Convection-Diffusion Model STEERB
88(3)
5.2.1 Background Electromagnetic Fields
88(1)
5.2.2 Basic Equation
89(1)
5.2.3 Convection and Diffusion Coefficients
89(1)
5.2.4 Numerical Method
90(1)
5.3 Application
91(5)
5.3.1 Background
91(1)
5.3.2 Inputs
91(1)
5.3.3 Outputs
92(4)
5.4 Conclusions and Discussions
96(5)
References
97(4)
6 Summary
101(3)
6.1 Developing of STTERB Model and Obtained Physical Results
101(1)
6.2 Comparison of Radiation Belt Kinetic Models
102(2)
6.3 Future Developments of STEERB Model
104(1)
References 104
Dr. Su is now an Associate Professor works in Department of Geophysics and Planetary Sciences, University of Science and Technology of China, Hefei, China.

Honors: Excellent Doctoral Dissertation Award of Chinese Academy of Sciences Special Prize of the President Scholarship of Chinese Academy of Sciences

Publication list: 1. Su, Z. P., Zhu, H., Xiao, F. L., Zheng, H. N., Wang, Y. M., He, Z. G., Shen, C., Shen, C. L., Wang, C. B., Liu, R., Zhang, M., Wang, S., Kletzing, C. A., Kurth, W. S., Hospodarsky, G. B., Spence, H. E., Reeves, G. D. Funsten, H. O., Blake, J. B., and Baker, D. N., Intense duskside lower-band chorus waves observed by Van Allen Probes: Generation and potential acceleration effect on radiation belt electrons, J. Geophys. Res., 119, 42664273, 2014. 2. Su, Z. P., Zhu, H., Xiao, F. L., Zheng, H. N., Zhang, M., Liu, Y., Shen, C., Wang, Y. M., and Wang, S., Latitudinal dependence of nonlinear interaction between electromagnetic ion cyclotron wave and terrestrial ring current ions, Phys. Plasmas, 21, 052310, 2014. 3. Su, Z. P., Xiao, F. L., Zheng, H. N., He, Z. G., Zhu, H., Zhang, M., Shen, C., Wang, Y. M., Wang, S., Kletzing, C. A., Kurth, W. S., Hospodarsky, G. B., Spence, H. E., Reeves, G. D., Funsten, H. O., Blake, J. B., and Baker, D. N., Nonstorm-time dynamics of electron radiation belts observed by the Van Allen Probes, Geophys. Res. Lett., 41, 229235, 2014. 4. Su, Z. P., Zhu, H., Xiao, F. L., Zheng, H. N., Shen, C., Wang, Y. M., and Wang, S., Latitudinal dependence of nonlinear interaction between electromagnetic ion cyclotron wave and radiation belt relativistic electrons, J. Geophys. Res., 118, 31883202, 2013. 5. Su, Z. P., Zhu, H., Xiao, F. L., Zheng, H. N., Shen, C., Wang, Y. M., and Wang, S., Bounce-averaged advection and diffusion coefficients for monochromatic electromagnetic ion cyclotron wave: Comparison between test-particle and quasi-linear models, J. Geophys. Res.,117, A09222, 2012. 6. Su, Z. P., Zong, Q.-G., Yue, C., Wang, Y. F., Zhang, H., and Zheng, H. N., Proton auroral intensification induced by interplanetary shock on 7 November 2004, J. Geophys. Res., 116, A08223, 2011. 7. Su, Z. P., Xiao, F. L., Zheng, H. N., and Wang, S., Radiation belt electron dynamics driven by adiabatic transport, radial diffusion, and wave-particle interactions, J. Geophys. Res., 116, A04205, 2011.

8. Su, Z. P., Xiao, F. L., Zheng, H. N., and Wang, S., CRRES observation and STEERB simulation of the 9 October 1990 electron radiation belt dropout event, Geophys. Res. Lett., 38, L06106, 2011. 9. Su, Z. P., Zheng, H. N., Chen, L. X., and Wang, S., Numerical simulations of storm-time outer radiation belt dynamics by wave-particle interactions including cross diffusion, J. Atoms. Sol.-Terres. Phys., 73, 95-105, 2011. 10. Su, Z. P., Xiao, F. L., Zheng, H. N., and Wang, S., Combined radial diffusion and adiabatic transport of radiation belt electrons with arbitrary pitch-angles, J. Geophys. Res., 115, A10249, 2010. 11. Su, Z. P., Xiao, F. L., Zheng, H. N., and Wang, S., STEERB: A three-dimensional code for storm-time evolution of electron radiation belt, J. Geophys. Res., 115, A09208, 2010. 12. Su, Z. P., Zheng, H. N., and Wang, S., Three dimensional simulation of energetic outer zone electron dynamics due to wave-particle interaction and azimuthal advection, J. Geophys. Res., 115, A06203, 2010. 13. Su, Z. P., Zheng, H. N., and Wang, S., A parametric study on the diffuse auroral precipitation by resonant interaction with whistler-mode chorus, J. Geophys. Res., 115, A05219, 2010. 14. Su, Z. P., Zheng, H. N., and Wang, S., Evolution of electron pitch angle distribution due to interactions with whistler-mode chorus following substorm injections, J. Geophys. Res., 114, A08202, 2009. 15. Su, Z. P., Zheng, H. N., and Wang, S., Dynamic evolution of energetic outer zone electrons due to whistler-mode chorus based on a realistic density model, J. Geophys. Res., 114, A07201, 2009.