Muutke küpsiste eelistusi

E-raamat: Global Nonlinear Stability Of Minkowski Space For Self-gravitating Massive Fields, The

(Xi'an Jiaotong Univ, China), (Sorbonne Univ, France)
  • Formaat - PDF+DRM
  • Hind: 64,35 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book is devoted to the Einstein's field equations of general relativity for self-gravitating massive scalar fields. We formulate the initial value problem when the initial data set is a perturbation of an asymptotically flat, spacelike hypersurface in Minkowski spacetime. We then establish the existence of an Einstein development associated with this initial data set, which is proven to be an asymptotically flat and future geodesically complete spacetime.
Preface vii
1 Introduction
1(8)
1.1 The nonlinear stability problem for the Einstein equations
1(3)
1.2 Statement of the main result
4(5)
2 Overview of the Hyperboloidal Foliation Method
9(10)
2.1 The semi-hyperboloidal frame and the hyperboloidal frame
9(2)
2.2 Spacetime foliation and initial data set
11(3)
2.3 Coordinate formulation of the nonlinear stability property
14(2)
2.4 Bootstrap argument and construction of the initial data
16(1)
2.5 Outline of the Monograph
17(2)
3 Functional Analysis on Hyperboloids of Minkowski Spacetime
19(26)
3.1 Energy estimate on hyperboloids
19(6)
3.2 Sup-norm estimate based on curved characteristic integration
25(3)
3.3 Sup-norm estimate for wave equations with source
28(7)
3.4 Sup-norm estimate for Klein-Gordon equations
35(1)
3.5 Weighted Hardy inequality along the hyperboloidal foliation
36(4)
3.6 Sobolev inequality on hyperboloids
40(1)
3.7 Hardy inequality for hyperboloids
41(2)
3.8 Commutator estimates for admissible vector fields
43(2)
4 Quasi-Null Structure of the Einstein-Massive Field System on Hyperboloids
45(24)
4.1 Einstein equations in wave coordinates
45(6)
4.2 Analysis of the support
51(2)
4.3 A classification of nonlinearities in the Einstein-massive field system
53(5)
4.4 Estimates based on commutators and homogeneity
58(1)
4.5 Basic structure of the quasi-null terms
59(1)
4.6 Metric components in the semi-hyperboloidal frame
60(2)
4.7 Wave gauge condition in the semi-hyperboloidal frame
62(3)
4.8 Revisiting the structure of the quasi-null terms
65(4)
5 Initialization of the Bootstrap Argument
69(4)
5.1 The bootstrap assumption and the basic estimates
69(3)
5.2 Estimates based on integration along radial rays
72(1)
6 Direct Control of Nonlinearities in the Einstein Equations
73(4)
6.1 L∞ estimates
73(1)
6.2 L2 estimates
74(3)
7 Direct Consequences of the Wave Gauge Condition
77(12)
7.1 L∞ estimates
77(4)
7.2 L2 estimates
81(3)
7.3 Commutator estimates
84(5)
8 Second-Order Derivatives of the Spacetime Metric
89(10)
8.1 Preliminary
89(2)
8.2 L∞ estimates
91(1)
8.3 L2 estimates
92(3)
8.4 Conclusion for general second-order derivatives
95(1)
8.5 Commutator estimates
95(4)
9 Sup-Norm Estimate Based on Characteristics
99(6)
9.1 Main statement in this section
99(4)
9.2 Application to quasi-null terms
103(2)
10 Low-Order Refined Energy Estimate for the Spacetime Metric
105(8)
10.1 Preliminary
105(2)
10.2 Main estimate established in this section
107(3)
10.3 Application of the refined energy estimate
110(3)
11 Low-Order Refined Sup-Norm Estimate for the Metric and Scalar Field
113(12)
11.1 Main estimates established in this section
113(1)
11.2 First refinement on the metric components
114(2)
11.3 First refinement for the scalar field
116(2)
11.4 Second refinement for the scalar field and the metric
118(2)
11.5 A secondary bootstrap argument
120(5)
12 High-Order Refined L2 Estimates
125(14)
12.1 Objective of this section and preliminary
125(6)
12.2 Main estimates in this section
131(5)
12.3 Applications to the derivation of refined decay estimates
136(3)
13 High-Order Refined Sup-Norm Estimates
139(8)
13.1 Preliminary
139(2)
13.2 Main estimate in this section
141(6)
14 Low-Order Refined Energy Estimate for the Scalar Field
147(4)
Appendix A Revisiting the wave-Klein-Gordon model 151(2)
Appendix B Sup-norm estimate for the wave equations 153(6)
Appendix C Sup-norm estimate for the Klein-Gordon equation 159(6)
Appendix D Commutator estimates for the hyperboloidal frame 165(6)
Bibliography 171