Muutke küpsiste eelistusi

E-raamat: Glycome Informatics: Methods and Applications

Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 90,47 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

A Focused, State-of-the-Art Overview of This Evolving Field Presents Various Techniques for Glycoinformatics





The development and use of informatics tools and databases for glycobiology and glycomics research have increased considerably in recent years. In addition to accumulating well-structured glyco-related data, researchers have now developed semi-automated methods for the annotation of mass spectral data and algorithms for capturing patterns in glycan structure data. These techniques have enabled researchers to gain a better understanding of how these complex structures affect protein function and other biological processes, including cancer.





One of the few up-to-date books available in this important area, Glycome Informatics: Methods and Applications covers all known informatics methods pertaining to the study of glycans. It discusses the current status of carbohydrate databases, the latest analytical techniques, and the informatics needed for rapid progress in glycomics research.





Providing an overall understanding of glycobiology, this self-contained guide focuses on the development of glycome informatics methods and current problems faced by researchers. It explains how to implement informatics methods in glycobiology. The author includes the required background material on glycobiology as well as the mathematical concepts needed to understand advanced mining and algorithmic techniques. She also suggests project themes for readers looking to begin research in the field.
List of Tables
xi
List of Figures
xiii
About the Author xvii
Introduction to Glycobiology
1(24)
Roles of carbohydrates
1(1)
Glycan structures
2(4)
Glycan classe
6(7)
Glycan biosynthesis
13(7)
N-linked glycans
13(3)
O-linked glycans
16(1)
Glycosaminoglycans (GAGs)
16(1)
Glycosphingolipids (GSLs)
17(2)
GPI anchors
19(1)
LPS
19(1)
Glycan motifs
20(2)
Potential for drug discovery
22(3)
Background
25(36)
Glycan nomenclature
25(23)
InChI™
25(2)
(Extended) IUPAC format
27(3)
CarbBank format
30(1)
KCF format
31(1)
LINUCS format
32(2)
BCSDB format
34(3)
Linear Code®
37(3)
GlycoCT format
40(6)
XML representations
46(2)
Lectin-glycan interactions
48(10)
Families and types of lectins
50(7)
Carbohydrate-binding mechanism of lectins
57(1)
Carbohydrate-carbohydrate interactions
58(3)
Databases
61(46)
Glycan structure databases
61(29)
KEGG GLYCAN
62(6)
GLYCOSCIENCES.de
68(6)
CFG
74(8)
BCSDB
82(3)
Glyco3D
85(1)
MonoSaccharideDB
86(3)
GlycomeDB
89(1)
Glyco-gene databases
90(6)
KEGG Brite
91(1)
CFG
91(3)
GGDB
94(1)
CAZy
94(2)
Lipid databases
96(5)
SphingoMAP©
96(1)
LipidBank
97(1)
LMSD
98(3)
Lectin databases
101(1)
Lectines
101(1)
Animal Lectin DB
101(1)
Others
101(6)
GlycoEpitopeDB
101(1)
ECODAB
102(4)
SugarBindDB
106(1)
Glycome Informatics
107(86)
Terminology and notations
107(1)
Algorithmic techniques
108(6)
Tree structure alignment
108(2)
Linkage analysis using score matrices
110(2)
Glycan variation map
112(2)
Bioinformatic methods
114(16)
Glycan structure prediction from glycogene microarrays
114(2)
Glyco-gene sequence and structure analysis
116(3)
Glyco-related pathway analysis
119(5)
Mass spectral data annotation
124(6)
Data mining techniques
130(43)
Kernal methods
131(7)
Frequent subtree mining
138(4)
Probabilistic models
142(31)
Glycomics tools
173(20)
Visualization tools
173(4)
Pathway analysis tools
177(1)
PDB data analysis
178(1)
3D analysis tools
179(3)
Molecular dynamics
182(4)
Spectroscopic tools
186(3)
NMR tools
189(4)
Potential Research Projects
193(34)
Sequence and structural analyses
193(2)
Glycan score matrix
194(1)
Visualization
194(1)
Databases and techniques to integrate heterogeneous data sets
195(1)
Automated characterization of glycans from MS data
196(1)
Prediction of glycans from data other than MS
196(1)
Biomarker prediction
197(1)
Systems analyses
197(1)
Drug discovery
198(1)
Sequence Analysis Methods
199(8)
Pairwise sequence alignment (dynamic programming)
199(1)
Dynamic programming
199(3)
Sequence alignment
202(3)
Blosum (Blocks Substitution Matrix)
205(2)
Machine Learning Methods
207(14)
Kernel methods and SVMs
207(4)
Hidden Markov models
211(2)
The three problems of interest for HMMs
213(2)
Expectation-Maximization (EM) algorithm
215(1)
Hidden tree Markov models
216(2)
Profile Hidden Markov models (profile HMMs)
218(3)
Glycomics Technologies
221(6)
Mass spectrometry (MS)
221(1)
MALDI-MS
222(1)
FT-ICR
223(1)
LC-MS (HPLC)
224(1)
Tandem MS
224(1)
Nuclear magnetic resonance (NMR)
225(2)
References 227(14)
Index 241
Kiyoko F. Aoki-Kinoshita simultaneously received her bachelors and mastersdegrees of science in computer science from Northwestern University in 1996, after which she received her doctorate in computer engineering from Northwestern in 1999 under Dr. D. T. Lee. She was employed at BioDiscovery, Inc. in Los Angeles, California as a senior software engineer before moving to Kyoto, Japan, to work as a post-doctoral researcher at the Bioinformatics Center, Institute of Chemical Research, Kyoto University, under Drs. Hiroshi Mamitsuka and Minoru Kanehisa. There, she developed various algorithmic and data mining methods for analyzing the glycan structure data that were accumulated in the KEGG GLYCAN database. Since then, she has joined the faculty in the Department of Bioinformatics, Faculty of Engineering, Soka University, in Tokyo, Japan and is now an associate professor teaching bioinformatics. She is also involved in several research projects pertaining to the understanding of glycan function based on their structure as well as the recognition patterns of glycan structures by other proteins and even viruses. She has also begun developing a Web resource called RINGS (Resource for INformatics of Glycomes at Soka) that is still in its infancy, but is intended to freely provide many of the informatics algorithms and methods described in this book over the Web such that scientists may utilize them easily.