Muutke küpsiste eelistusi

E-raamat: Granular Computing in Decision Approximation: An Application of Rough Mereology

Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 110,53 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book presents a study in knowledge discovery in data with knowledge understood as a set of relations among objects and their properties. Relations in this case are implicative decision rules and the paradigm in which they are induced is that of computing with granules defined by rough inclusions, the latter introduced and studied within rough mereology, the fuzzified version of mereology. In this book basic classes of rough inclusions are defined and based on them methods for inducing granular structures from data are highlighted. The resulting granular structures are subjected to classifying algorithms, notably k—nearest neighbors and bayesian classifiers.

Experimental results are given in detail both in tabular and visualized form for fourteen data sets from UCI data repository. A striking feature of granular classifiers obtained by this approach is that preserving the accuracy of them on original data, they reduce substantially the size of the granulated data set as well as the set of granular decision rules. This feature makes the presented approach attractive in cases where a small number of rules providing a high classification accuracy is desirable. As basic algorithms used throughout the text are explained and illustrated with hand examples, the book may also serve as a textbook.

Arvustused

The book provides an extended presentation of granular computing, focusing on applications in classification/decision theory. the book is intended to students and researchers interested in granular computing. (Florin Gorunescu, zbMATH 1314.68006, 2015)

1 Similarity and Granulation
1(16)
1.1 Introduction
1(1)
1.2 Similarity
2(2)
1.2.1 Graded Similarity
3(1)
1.3 Granulation
4(3)
1.4 On Selected Approaches to Granulation
7(2)
1.4.1 Granules from Binary Relations
8(1)
1.4.2 Granules in Information Systems from Indiscernibility
8(1)
1.4.3 Granules from Generalized Descriptors
9(1)
1.5 A General Approach to Similarity Based Granules
9(8)
1.5.1 Operations on Granules
10(1)
1.5.2 An Example of Granule Fusion: Assembling
10(2)
References
12(5)
2 Mereology and Rough Mereology: Rough Mereological Granulation
17(16)
2.1 Mereology
17(4)
2.1.1 Mereology of Lesniewski
17(4)
2.2 Rough Mereology
21(4)
2.2.1 Rough Inclusions
22(3)
2.3 Granules from Rough Inclusions
25(3)
2.3.1 Rough Inclusions on Granules
27(1)
2.4 General Properties of Rough Mereological Granules
28(1)
2.5 Ramifications of Rough Inclusions
29(4)
References
30(3)
3 Learning Data Classification: Classifiers in General and in Decision Systems
33(30)
3.1 Learning by Machines: A Concise Introduction
33(6)
3.1.1 Bayes Classifier
34(1)
3.1.2 Nearest Neighbor Classifier: Asymptotic Properties
35(2)
3.1.3 Metrics for kNN
37(2)
3.2 Classifiers: Concept Learnability
39(2)
3.2.1 The VC Dimension and PAC Learning
40(1)
3.3 Rough Set Approach to Data: Classifiers in Decision Systems
41(3)
3.4 Decision Systems
44(2)
3.5 Decision Rules
46(9)
3.5.1 Exhaustive Rules
47(4)
3.5.2 Minimal Sets of Rules: LEM2
51(1)
3.5.3 Quality Evaluations for Decision Rules
52(3)
3.6 Dependencies
55(1)
3.7 Granular Processing of Data
55(2)
3.8 Validation Methods: CV
57(6)
References
59(4)
4 Methodologies for Granular Reflections
63(42)
4.1 Granules: Granular Reflections
63(5)
4.1.1 The Standard Rough Inclusion
64(1)
4.1.2 ε-Modification of the Standard Rough Inclusion
64(1)
4.1.3 Residual Rough Inclusions
65(1)
4.1.4 Metrics for Rough Inclusions
65(2)
4.1.5 A Ranking of Metrics
67(1)
4.2 Granular Coverings
68(2)
4.3 Granular Reflections
70(5)
4.4 Ramifications of Granulation: Concept-Dependent and Layered
75(2)
4.5 Granular Approximations to Decision Function
77(14)
4.6 Validation of Proposed Algorithms on Real Data Sets
91(2)
4.7 Concept-Dependent and Layered Granulation on Real Data: Granulation as a Compression Tool
93(7)
4.7.1 Layered Learning
99(1)
4.8 Applications of Granular Reflections to Missing Values
100(5)
References
103(2)
5 Covering Strategies
105(116)
5.1 Description of the Chosen Classifier
105(2)
5.2 Parameter Estimation in kNN Classifier
107(1)
5.3 Granular Covering Methods
107(10)
5.3.1 Order-Preserving Coverings: Cov1
108(1)
5.3.2 Random Coverings: Cov2
109(1)
5.3.3 Coverings by Granules of a Minimal Size: Cov3
109(1)
5.3.4 Coverings by Granules of Average Size: Cov4
110(1)
5.3.5 Coverings by Granules of Maximal Size: Cov5
111(1)
5.3.6 Coverings by Granules Which Transfer the Smallest Number of New Objects: Cov6
112(1)
5.3.7 Coverings by Granules Which Transfer an Average Number of New Objects: Cov7
112(1)
5.3.8 Coverings by Granules Which Transfer Maximal Number of New Objects: Cov8
113(1)
5.3.9 Order-Preserving Coverings Proportional to the Size of Decision Classes: Cov9
113(1)
5.3.10 Random Coverings Proportional to the Size of Decision Classes: Cov10
113(1)
5.3.11 Coverings Proportional to the Size of Decision Classes by Granules of a Minimal Size: Cov11
114(1)
5.3.12 Coverings Proportional to the Size of Decision Classes by Granules of the Average Size: Cov12
114(1)
5.3.13 Coverings Proportional to the Size of Decision Classes by Granules of a Maximal Size: Cov13
115(1)
5.3.14 Coverings Proportional to the Size of Decision Classes, by Granules Which Transfer the Smallest Number of New Objects: Cov14
116(1)
5.3.15 Coverings Proportional to the Size of Decision Classes, by Granules Which Transfer the Average Number of New Objects: Cov15
116(1)
5.3.16 Coverings Proportional to the Size of Decision Classes, by Granules Which Transfer a Maximal Number of New Objects: Cov16
117(1)
5.4 Experimental Session with Real World Data Sets
117(1)
5.5 Summary of Results for Discrete Data Sets from UCI Repository
118(33)
5.6 Validation of Results: Combined Average Accuracy with Percentage of Reduction of Object Number, and, 5 × CV5 Accuracy Bias
151(34)
5.7 Best Result Based on CombAGS and the Error (accr=1 - acc) ≤ 0.02
185(36)
6 Layered Granulation
221(56)
6.1 Introduction
221(7)
6.1.1 An Example of Multiple Granulation
222(5)
6.1.2 Experiments with Real Data
227(1)
6.2 Results of Experiments for Symbolic Data from UCI Repository
228(25)
6.3 In Search for the Optimal Granulation Radius
253(24)
6.3.1 Results Pointed to by the Two-layered Granulation
255(6)
6.3.2 Comparison of Results Pointed by Double Granulation and Best CombAGS
261(14)
6.3.3 A Comparison for Accuracy Error accr=1 - acc ≤ 0.01 of CombAGS and GranSizeli-1 - GranSizeli
275(1)
References
276(1)
7 Naive Bayes Classifier on Granular Reflections: The Case of Concept-Dependent Granulation
277(26)
7.1 Naive Bayes Classifier
277(5)
7.1.1 An Example of Bayes Classification
279(3)
7.2 Results of an Experimental Session with Real Data
282(21)
7.2.1 Examined Variants of Bayes Classifier
282(1)
7.2.2 Evaluation of Results
282(1)
7.2.3 A Discussion of Results
282(19)
References
301(2)
8 Granular Computing in the Problem of Missing Values
303(46)
8.1 Introduction
303(7)
8.1.1 A Survey of Strategies
303(3)
8.1.2 Examples of Basic Strategies
306(4)
8.2 The Experimental Session
310(39)
8.2.1 The Methodology of the Experiment
310(1)
8.2.2 Evaluation of Results
311(1)
8.2.3 The Results of Experiments for Data Sets Damaged in 5 and 10%
311(36)
References
347(2)
9 Granular Classifiers Based on Weak Rough Inclusions
349(50)
9.1 Introduction
349(1)
9.2 Results of Experiments with Classifiers 5_v1, 6_v1, 7_v1, 8_v1-8_v5 Based on the Parameter ε
349(6)
9.3 Results of Experiments with Classifiers Based on Parameters ε and rcatch
355(35)
9.4 Results of Experiments with Classifiers 5_v3, 6_v3, 7_v3 Based on the Parameter ε
390(9)
References
398(1)
10 Effects of Granulation on Entropy and Noise in Data
399(18)
10.1 On Entropy Behavior During Granulation
399(1)
10.2 On Noise in Data During Granulation
400(9)
10.3 On Characteristics of Data Sets Bearing on Granulation
409(8)
11 Conclusions
417(6)
References
422(1)
Appendix A Data Characteristics Bearing on Classification 423(20)
Author Index 443(4)
General Index 447(4)
Symbols 451