Muutke küpsiste eelistusi

E-raamat: Graph Algorithms for Data Science: With examples in Neo4j

  • Formaat: 352 pages
  • Ilmumisaeg: 12-Mar-2024
  • Kirjastus: Manning Publications
  • Keel: eng
  • ISBN-13: 9781638350545
  • Formaat - EPUB+DRM
  • Hind: 51,64 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 352 pages
  • Ilmumisaeg: 12-Mar-2024
  • Kirjastus: Manning Publications
  • Keel: eng
  • ISBN-13: 9781638350545

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Graphs are the natural way to understand connected data. This book explores the most important algorithms and techniques for graphs in data science, with practical examples and concrete advice on implementation and deployment.

In   Graph Algorithms for Data Science  you will learn:





Labeled-property graph modeling Constructing a graph from structured data such as CSV or SQL NLP techniques to construct a graph from unstructured data Cypher query language syntax to manipulate data and extract insights Social network analysis algorithms like PageRank and community detection How to translate graph structure to a ML model input with node embedding models Using graph features in node classification and link prediction workflows



Graph Algorithms for Data Science  is a hands-on guide to working with graph-based data in applications like machine learning, fraud detection, and business data analysis. It's filled with fascinating and fun projects, demonstrating the ins-and-outs of graphs. You'll gain practical skills by analyzing Twitter, building graphs with NLP techniques, and much more. You don't need any graph experience to start benefiting from this insightful guide. These powerful graph algorithms are explained in clear, jargon-free text and illustrations that makes them easy to apply to your own projects. about the technology Graphs reveal the relationships in your data. Tracking these interlinking connections reveals new insights and influences and lets you analyze each data point as part of a larger whole. This interconnected data is perfect for machine learning, as well as analyzing social networks, communities, and even product recommendations. about the book Graph Algorithms for Data Science  teaches you how to construct graphs from both structured and unstructured data. You'll learn how the flexible Cypher query language can be used to easily manipulate graph structures, and extract amazing insights. The book explores common and useful graph algorithms like PageRank and community detection/clustering algorithms. Each new algorithm you learn is instantly put into action to complete a hands-on data project, including modeling a social network! Finally, you'll learn how to utilize graphs to upgrade your machine learning, including utilizing node embedding models and graph neural networks.

Arvustused

'The book covers topics in-depth but is easy to understand. Though delving into theory, it doesn't lose its focus of being a more practical guide. ' Carl Yu

'A good starting point to getting started with network analysis and how to extract the essential information you need easily.' Andrea Paciolla



'A great introduction to how to use graphs and data they can provide.' Marcin Sk

table of contents  detailed TOC READ IN LIVEBOOK 1GRAPHS AND
NETWORK SCIENCE: AN INTRODUCTION READ IN LIVEBOOK 2REPRESENTING NETWORK
STRUCTURE - DESIGN YOUR FIRST GRAPH MODEL READ IN LIVEBOOK 3YOUR FIRST
STEPS WITH THE CYPHER QUERY LANGUAGE READ IN LIVEBOOK 4CYPHER
AGGREGATIONS AND SOCIAL NETWORK ANALYSIS 5 INFERRING NETWORKS AND
MONOPARTITE PROJECTIONS 6 CONSTRUCT A GRAPH USING NLP TECHNIQUES 7
NODE EMBEDDINGS AND CLASSIFICATION 8 IMPROVE DOCUMENT CLASSIFICATION
WITH GRAPH NEURAL NETWORKS 9 PREDICT NEW CONNECTIONS 10 KNOWLEDGE
GRAPH COMPLETION READ IN LIVEBOOK APPENDIX A: ADJACENCY MATRIX
Toma Bratani is a network scientist at heart, working at the intersection of graphs and machine learning. He has applied these graph techniques to projects in various domains including fraud detection, biomedicine, business-oriented analytics, and recommendations.