Muutke küpsiste eelistusi

E-raamat: Graph-Based Representations in Pattern Recognition: 5th IAPR International Workshop, GbRPR 2005, Poitiers, France, April 11-13, 2005, Proceedings

Edited by , Edited by
  • Formaat: PDF+DRM
  • Sari: Lecture Notes in Computer Science 3434
  • Ilmumisaeg: 10-Mar-2005
  • Kirjastus: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Keel: eng
  • ISBN-13: 9783540319887
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 55,56 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Sari: Lecture Notes in Computer Science 3434
  • Ilmumisaeg: 10-Mar-2005
  • Kirjastus: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Keel: eng
  • ISBN-13: 9783540319887
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Many vision problems have to deal with di erent entities (regions, lines, line junctions, etc.) and their relationships. These entities together with their re- tionships may be encoded using graphs or hypergraphs. The structural inf- mation encoded by graphs allows computer vision algorithms to address both the features of the di erent entities and the structural or topological relati- ships between them. Moreover, turning a computer vision problem into a graph problem allows one to access the full arsenal of graph algorithms developed in computer science. The Technical Committee (TC15, http://www.iapr.org/tcs.html) of the IAPR (International Association for Pattern Recognition) has been funded in order to federate and to encourage research work in these ?elds. Among its - tivities, TC15 encourages the organization of special graph sessions at many computer vision conferences and organizes the biennial workshop GbR. While being designed within a speci c framework, the graph algorithms developed for computer vision and pattern recognition tasks often share constraints and goals with those developed in other research ?elds such as data mining, robotics and discrete geometry. The TC15 community is thus not closed in its research ?elds but on the contrary is open to interchanges with other groups/communities.
Graph Representations
Hypergraph-Based Image Representation
1(11)
Alain Bretto
Luc Gillibert
Vectorized Image Segmentation via Trixel Agglomeration
12(11)
Lakshman Prasad
Alexei N. Skourikhine
Graph Transformation in Document Image Analysis: Approaches and Challenges
23(12)
Dorothea Blostein
Graphical Knowledge Management in Graphics Recognition Systems
35(10)
Mathieu Delalandre
Eric Trupin
Jacques Labiche
Jean-Marc Ogier
A Vascular Network Growth Estimation Algorithm Using Random Graphs
45(9)
Sung-Hyuk Cha
Michael L. Gargano
Louis V. Quintas
Eric M. Wahl
Graphs and Linear Representations
A Linear Generative Model for Graph Structure
54(9)
Bin Luo
Richard C. Wilson
Edwin R. Hancock
Graph Seriation Using Semi-definite Programming
63(9)
Hang Yu
Edwin R. Hancock
Comparing String Representations and Distances in a Natural Images Classification Task
72(10)
Julien Ros
Christophe Laurent
Jean-Michel Jolion
Isabelle Simand
Reduction Strings: A Representation of Symbolic Hierarchical Graphs Suitable for Learning
82(10)
Michael Melki
Jean-Michel Jolion
Combinatorial Maps
Representing and Segmenting 2D Images by Means of Planar Maps with Discrete Embeddings: From Model to Applications
92(30)
Achille Braquelaire
Inside and Outside Within Combinatorial Pyramids
122(10)
Luc Brun
Walter Kropatsch
The GeoMap: A Unified Representation for Topology and Geometry
132(10)
Hans Meine
Ullrich Kothe
Pyramids of n-Dimensional Generalized Maps
142(11)
Carine Grasset-Simon
Guillaume Damiand
Pascal Lienhardt
Matching
Towards Unitary Representations for Graph Matching
153(9)
David Emms
Simone Severini
Richard C. Wilson
Edwin R. Hancock
A Direct Algorithm to Find a Largest Common Connected Induced Subgraph of Two Graphs
162(10)
Bertrand Cuissart
Jean-Jacques Hebrard
Reactive Tabu Search for Measuring Graph Similarity
172(11)
Sebastien Sorlin
Christine Solnon
Tree Matching Applied to Vascular System
183(10)
Arnaud Charnoz
Vincent Agnus
Gregoire Malandain
Luc Soler
Mohamed Tajine
Hierarchical Graph Abstraction and Matching
A Graph-Based, Multi-resolution Algorithm for Tracking Objects in Presence of Occlusions
193(10)
Donatella Conte
Pasquale Foggia
Jean-Michel Jolion
Mario Vento
Coarse-to-Fine Object Recognition Using Shock Graphs
203(10)
Aurelie Bataille
Sven Dickinson
Adaptive Pyramid and Semantic Graph: Knowledge Driven Segmentation
213(10)
Aline Deruyver
Yann Hode
Eric Leanimer
Jean-Michel Jolion
A Graph-Based Concept for Spatiotemporal Information in Cognitive Vision
223(10)
Adrian Ion
Yll Haxhimusa
Walter G. Kropatsch
Inexact Graph Matching
Approximating the Problem, not the Solution: An Alternative View of Point Set Matching
233(10)
Tiberio S. Caetano
Terry Caelli
Defining Consistency to Detect Change Using Inexact Graph Matching
243(10)
Sidharta Gautama
Werner Goeman
Johan D'Haeyer
Asymmetric Inexact Matching of Spatially-Attributed Graphs
253(10)
Yang Li
Dorothea Blostein
Purang Abolmaesumi
From Exact to Approximate Maximum Common Subgraph
263(10)
Simone Marini
Michela Spagnuolo
Bianca Falcidieno
Learning
Automatic Learning of Structural Models of Cartographic Objects
273(8)
Guray Erus
Nicolas Lomenie
An Experimental Comparison of Fingerprint Classification Methods Using Graphs
281(10)
Alessandra Serrau
Gian Luca Marcialis
Horst Bunke
Fabio Roli
Collaboration Between Statistical and Structural Approaches for Old Handwritten Characters Recognition
291(10)
Denis Arrivault
Noel Richard
Christine Fernandez-Maloigne
Philippe Bouyer
Graph Sequences
Decision Trees for Error-Tolerant Graph Database Filtering
301(11)
Christophe Irniger
Horst Bunke
Recovery of Missing Information in Graph Sequences
312(10)
Horst Bunke
Peter Dickinson
Miro Kraetzl
Tree-Based Tracking of Temporal Image
322(10)
Tomoya Sakai
Atsushi Imiya
Heitoh Zen
Graph Kernels
Protein Classification with Kernelized Softassign
332(10)
Miguel Angel Lozano
Francisco Escolano
Local Entropic Graphs for Globally-Consistent Graph Matching
342(10)
Miguel Angel Lozano
Francisco Escolano
Edit Distance Based Kernel Functions for Attributed Graph Matching
352(10)
Michel Neuhaus
Horst Bunke
Graphs and Heat Kernels
A Robust Graph Partition Method from the Path-Weighted Adjacency Matrix
362(11)
Huaijun Qiu
Edwin R. Hancock
Recent Results on Heat Kernel Embedding of Graphs
373(10)
Xiao Bai
Edwin R. Hancock
Author Index 383