Preface |
|
xiii | |
Contributors |
|
xv | |
Editor Biography |
|
xvii | |
|
1 Graphs in Social and Digital Media |
|
|
1 | (20) |
|
|
|
|
|
1 | (2) |
|
1.2 Dominant social networking/media platforms |
|
|
3 | (2) |
|
1.3 Collecting data from social media sites |
|
|
5 | (3) |
|
|
8 | (6) |
|
1.4.1 Graphs from Facebook data |
|
|
8 | (2) |
|
1.4.2 Graphs from Twitter data |
|
|
10 | (2) |
|
1.4.3 Graphs from bibliographic data |
|
|
12 | (2) |
|
1.5 Graph storage formats and visualization |
|
|
14 | (1) |
|
1.6 Big data issues in social and digital media |
|
|
15 | (1) |
|
1.7 Distributed computing platforms |
|
|
15 | (3) |
|
|
18 | (3) |
|
|
18 | (3) |
|
2 Mathematical Preliminaries: Graphs and Matrices |
|
|
21 | (14) |
|
|
|
|
|
21 | (3) |
|
|
24 | (4) |
|
2.3 Matrix decompositions |
|
|
28 | (3) |
|
2.4 Vector and matrix derivatives |
|
|
31 | (4) |
|
|
31 | (4) |
|
3 Algebraic Graph Analysis |
|
|
35 | (32) |
|
|
|
|
|
35 | (1) |
|
3.2 Spectral graph theory |
|
|
36 | (2) |
|
3.2.1 Adjacency and Laplacian matrix |
|
|
36 | (1) |
|
3.2.2 Similarity matrix and nearest neighbor graph |
|
|
37 | (1) |
|
3.3 Applications of graph analysis |
|
|
38 | (2) |
|
3.4 Random graph generation |
|
|
40 | (5) |
|
3.4.1 Desirable random graph properties |
|
|
41 | (1) |
|
3.4.2 Random graph generation models |
|
|
41 | (2) |
|
3.4.3 Spectral graph generation |
|
|
43 | (2) |
|
|
45 | (6) |
|
3.5.1 Global clustering algorithms |
|
|
46 | (2) |
|
3.5.2 Local clustering algorithms |
|
|
48 | (1) |
|
3.5.3 Spectral clustering algorithms |
|
|
48 | (2) |
|
3.5.4 Overlapping community detection |
|
|
50 | (1) |
|
|
51 | (3) |
|
3.6.1 Spectral graph matching |
|
|
53 | (1) |
|
3.6.2 Frequent subgraph mining |
|
|
54 | (1) |
|
|
54 | (2) |
|
3.8 Graph anomaly detection |
|
|
56 | (2) |
|
3.8.1 Spectral anomaly detection |
|
|
57 | (1) |
|
|
58 | (9) |
|
|
59 | (8) |
|
4 Web Search Based on Ranking |
|
|
67 | (40) |
|
|
|
|
|
67 | (2) |
|
4.2 Information Retrieval Background |
|
|
69 | (3) |
|
4.2.1 Document representation |
|
|
69 | (2) |
|
|
71 | (1) |
|
4.3 Relevance Beyond the Web Page Text |
|
|
72 | (4) |
|
|
72 | (1) |
|
|
73 | (3) |
|
4.4 Centrality and Prestige |
|
|
76 | (12) |
|
|
77 | (3) |
|
4.4.2 Eigenvector centrality and prestige |
|
|
80 | (1) |
|
|
81 | (3) |
|
4.4.4 Hubs and authorities |
|
|
84 | (3) |
|
|
87 | (1) |
|
4.5 Topic-Sensitive Ranking |
|
|
88 | (4) |
|
|
89 | (2) |
|
|
91 | (1) |
|
4.6 Ranking in Heterogeneous Networks |
|
|
92 | (5) |
|
4.6.1 Ranking in heterogeneous information networks |
|
|
93 | (2) |
|
4.6.2 Ranking-Based clustering |
|
|
95 | (2) |
|
4.7 Organizing Search Results |
|
|
97 | (2) |
|
|
99 | (8) |
|
|
100 | (7) |
|
5 Label Propagation and Information Diffusion in Graphs |
|
|
107 | (56) |
|
|
|
|
|
108 | (1) |
|
5.2 Graph construction approaches |
|
|
109 | (11) |
|
5.2.1 Neighborhood approaches |
|
|
110 | (1) |
|
5.2.2 Local reconstruction approaches |
|
|
111 | (2) |
|
5.2.3 Metric learning approaches |
|
|
113 | (5) |
|
5.2.4 Scalable graph construction methods |
|
|
118 | (2) |
|
5.3 Label inference methods |
|
|
120 | (14) |
|
5.3.1 Iterative algorithms |
|
|
120 | (2) |
|
|
122 | (1) |
|
5.3.3 Graph regularization |
|
|
123 | (4) |
|
5.3.4 Graph kernel regularization |
|
|
127 | (1) |
|
5.3.5 Inductive label inference |
|
|
128 | (1) |
|
5.3.6 Label propagation on data with multiple representations |
|
|
129 | (2) |
|
5.3.7 Label propagation on hypergraphs |
|
|
131 | (1) |
|
5.3.8 Label propagation initialization |
|
|
132 | (1) |
|
5.3.9 Applications in digital media |
|
|
133 | (1) |
|
|
134 | (2) |
|
5.4.1 Diffusion in physics |
|
|
134 | (1) |
|
5.4.2 Diffusion in sociology |
|
|
135 | (1) |
|
5.4.3 Diffusion in social media |
|
|
135 | (1) |
|
5.5 Social network diffusion models |
|
|
136 | (9) |
|
5.5.1 Game theoretical diffusion models |
|
|
137 | (1) |
|
5.5.2 Epidemic diffusion models |
|
|
137 | (1) |
|
5.5.3 Threshold diffusion models |
|
|
138 | (1) |
|
5.5.4 Cascade diffusion models |
|
|
139 | (1) |
|
5.5.5 Influence maximization |
|
|
140 | (2) |
|
5.5.6 Cross-Media information diffusion |
|
|
142 | (1) |
|
5.5.7 Other applications of information diffusion |
|
|
143 | (2) |
|
|
145 | (18) |
|
|
146 | (17) |
|
6 Graph-Based Pattern Classification and Dimensionality Reduction |
|
|
163 | (24) |
|
|
|
|
163 | (1) |
|
|
164 | (2) |
|
|
166 | (3) |
|
6.3.1 Locality Preserving Projections |
|
|
166 | (1) |
|
6.3.2 Locally Linear Embedding |
|
|
167 | (1) |
|
|
168 | (1) |
|
6.3.4 Laplacian Embedding |
|
|
168 | (1) |
|
|
168 | (1) |
|
|
169 | (6) |
|
6.4.1 Linear Discriminant Analysis |
|
|
169 | (2) |
|
6.4.2 Marginal Fisher Analysis |
|
|
171 | (1) |
|
6.4.3 Local Fisher Discriminant Analysis |
|
|
171 | (1) |
|
|
172 | (1) |
|
6.4.5 Minimum Class Variance Extreme Learning Machine |
|
|
173 | (1) |
|
6.4.6 Minimum Class Variance Support Vector Machine |
|
|
174 | (1) |
|
6.4.7 Graph Embedded Support Vector Machines |
|
|
174 | (1) |
|
6.5 Semi-Supervised Methods |
|
|
175 | (2) |
|
6.5.1 Semi-Supervised Discriminant Analysis |
|
|
176 | (1) |
|
6.5.2 Laplacian Support Vector Machine |
|
|
176 | (1) |
|
6.5.3 Semi-Supervised Extreme Learning Machine |
|
|
177 | (1) |
|
|
177 | (1) |
|
|
178 | (9) |
|
|
179 | (8) |
|
7 Matrix and Tensor Factorization with Recommender System Applications |
|
|
187 | (28) |
|
|
|
187 | (2) |
|
7.2 Singular Value Decomposition on Matrices for Recommender Systems |
|
|
189 | (4) |
|
7.2.1 Applying the SVD and Preserving the Largest Singular Values |
|
|
190 | (1) |
|
7.2.2 Generating the Neighborhood of Users/Items |
|
|
191 | (1) |
|
7.2.3 Generating the Recommendation List |
|
|
191 | (1) |
|
7.2.4 Inserting a Test User in the c-dimensional Space |
|
|
192 | (1) |
|
7.2.5 Other Factorization Methods |
|
|
192 | (1) |
|
7.3 Higher Order Singular Value Decomposition (HOSVD) on Tensors |
|
|
193 | (12) |
|
|
193 | (3) |
|
7.3.2 HOSVD for Recommendations in Social Tagging Systems |
|
|
196 | (4) |
|
7.3.3 Handling the Sparsity Problem |
|
|
200 | (1) |
|
7.3.4 Inserting New Users, Tags, or Items |
|
|
201 | (3) |
|
7.3.5 Other Scalable Factorization Models |
|
|
204 | (1) |
|
7.4 A Real Geo-Social System-Based on HOSVD |
|
|
205 | (5) |
|
7.4.1 GeoSocialRec Website |
|
|
205 | (2) |
|
7.4.2 GeoSocialRec Database and Recommendation Engine |
|
|
207 | (1) |
|
|
208 | (2) |
|
|
210 | (5) |
|
|
210 | (5) |
|
8 Multimedia Social Search Based on Hypergraph Learning |
|
|
215 | (60) |
|
|
|
215 | (3) |
|
|
218 | (5) |
|
8.2.1 Uniform hypergraphs |
|
|
220 | (3) |
|
8.3 Game-Theoretic approaches to uniform hypergraph clustering |
|
|
223 | (6) |
|
8.4 Spectral clustering for arbitrary hypergraphs |
|
|
229 | (9) |
|
8.5 Ranking on hypergraphs |
|
|
238 | (5) |
|
8.5.1 Enforcing structural constraints |
|
|
239 | (2) |
|
8.5.2 Learning hyperedge weights |
|
|
241 | (2) |
|
|
243 | (18) |
|
8.6.1 High-order web link analysis |
|
|
243 | (4) |
|
8.6.2 Hypergraph matching for object recognition |
|
|
247 | (2) |
|
8.6.3 Music recommendation and personalized music tagging |
|
|
249 | (2) |
|
8.6.4 Simultaneous image tagging and geo-location prediction |
|
|
251 | (3) |
|
8.6.5 Social image search exploiting joint visual-textual information |
|
|
254 | (2) |
|
8.6.6 Annotation, classification, and tourism recommendation driven by probabilistic latent semantic analysis |
|
|
256 | (5) |
|
8.7 Big data: Randomized methods for matrix/hypermatrix decompositions |
|
|
261 | (4) |
|
|
265 | (2) |
|
|
267 | (8) |
|
|
267 | (8) |
|
9 Graph Signal Processing in Social Media |
|
|
275 | (18) |
|
|
|
275 | (2) |
|
9.2 Graph signal processing (GSP) |
|
|
277 | (5) |
|
9.2.1 Basics of graph signal processing |
|
|
277 | (2) |
|
9.2.2 Spectral representation of graph signals |
|
|
279 | (1) |
|
9.2.3 Downsampling in graphs |
|
|
280 | (2) |
|
9.2.4 Graph wavelets and filterbanks |
|
|
282 | (1) |
|
|
282 | (7) |
|
9.3.1 Information diffusion pattern analysis |
|
|
282 | (2) |
|
9.3.2 Interpolation in graphs |
|
|
284 | (2) |
|
9.3.2.1 Movie recommendation system |
|
|
286 | (3) |
|
|
289 | (4) |
|
|
289 | (4) |
|
10 Big Data Analytics for Social Networks |
|
|
293 | (48) |
|
|
|
|
|
|
294 | (2) |
|
10.1.1 Signal processing for big data |
|
|
294 | (1) |
|
10.1.2 Social network analytics problems |
|
|
295 | (1) |
|
10.2 Visualizing and reducing dimension in social nets |
|
|
296 | (7) |
|
10.2.1 Kernel-based graph embedding |
|
|
296 | (2) |
|
10.2.2 Centrality-constraints |
|
|
298 | (2) |
|
|
300 | (1) |
|
10.2.4 Visualization of dynamic social networks |
|
|
300 | (3) |
|
10.3 Inference and imputation on social graphs |
|
|
303 | (8) |
|
10.3.1 Distributed anomaly detection for social graphs |
|
|
303 | (1) |
|
10.3.1.1 Anomaly detection via sparse plus low-rank decomposition |
|
|
303 | (2) |
|
10.3.1.2 In-network processing algorithm |
|
|
305 | (1) |
|
|
306 | (1) |
|
10.3.2 Prediction from partially-observed network processes |
|
|
307 | (1) |
|
10.3.2.1 Semi-supervised prediction of network processes |
|
|
308 | (1) |
|
10.3.2.2 Data-driven dictionary learning |
|
|
309 | (1) |
|
|
310 | (1) |
|
10.4 Unveiling communities in social networks |
|
|
311 | (8) |
|
10.4.1 Big data spectral clustering |
|
|
312 | (3) |
|
|
315 | (1) |
|
|
316 | (3) |
|
|
319 | (1) |
|
10.5 Topology tracking from information cascades |
|
|
319 | (11) |
|
10.5.1 Dynamic SEMs for tracking cascades |
|
|
321 | (1) |
|
10.5.1.1 Model and problem statement |
|
|
322 | (1) |
|
10.5.1.2 Exponentially-weighted least-squares estimator |
|
|
323 | (1) |
|
10.5.2 Topology tracking algorithm |
|
|
324 | (2) |
|
10.5.2.1 Accelerated convergence |
|
|
326 | (1) |
|
10.5.3 Real-Time operation |
|
|
327 | (1) |
|
10.5.3.1 Premature termination |
|
|
327 | (1) |
|
10.5.3.2 Stochastic gradient descent iterations |
|
|
327 | (1) |
|
10.5.4 Experiments on real data |
|
|
328 | (2) |
|
|
330 | (1) |
|
|
330 | (11) |
|
|
330 | (11) |
|
11 Semantic Model Adaptation for Evolving Big Social Data |
|
|
341 | (50) |
|
|
|
11.1 Introduction to Social Data Evolution |
|
|
341 | (2) |
|
11.2 Latent Model Adaptation |
|
|
343 | (16) |
|
11.2.1 Incremental Latent Semantic Analysis |
|
|
343 | (3) |
|
11.2.2 Incremental Probabilistic Latent Semantic Analysis |
|
|
346 | (9) |
|
11.2.3 Incremental Latent Dirichlet Allocation |
|
|
355 | (4) |
|
11.3 Incremental Spectral Clustering |
|
|
359 | (3) |
|
11.4 Tensor Model Adaptation |
|
|
362 | (6) |
|
11.4.1 Basic Tensor Concepts |
|
|
362 | (1) |
|
11.4.2 Incremental Tensor Analysis |
|
|
363 | (5) |
|
11.5 Parallel and Distributed Approaches for Big Data Analysis |
|
|
368 | (7) |
|
11.5.1 Parallel Probabilistic Latent Semantic Analysis |
|
|
368 | (1) |
|
11.5.2 Parallel Latent Dirichlet Allocation |
|
|
369 | (2) |
|
11.5.3 Parallel Spectral Clustering |
|
|
371 | (2) |
|
11.5.4 Distributed Tensor Decomposition |
|
|
373 | (2) |
|
11.6 Applications to Evolving Social Data Analysis |
|
|
375 | (4) |
|
11.6.1 Incremental Label Propagation |
|
|
375 | (1) |
|
11.6.2 Incremental Graph Clustering in Dynamic Social Networks |
|
|
376 | (3) |
|
|
379 | (12) |
|
|
381 | (10) |
|
12 Big Graph Storage, Processing and Visualization |
|
|
391 | (26) |
|
|
|
|
391 | (2) |
|
|
393 | (2) |
|
12.3 Big Graph Data Storage |
|
|
395 | (6) |
|
12.3.1 DBMS Architectures |
|
|
395 | (2) |
|
|
397 | (2) |
|
12.3.3 Storing and indexing graph structures |
|
|
399 | (2) |
|
12.4 Graph Data Processing |
|
|
401 | (4) |
|
12.4.1 Querying graphs in relational DBMS |
|
|
402 | (1) |
|
12.4.2 Graph querying in Datalog |
|
|
403 | (1) |
|
12.4.3 Query languages in graph DBMS |
|
|
403 | (2) |
|
12.5 Graph Data Visualization |
|
|
405 | (4) |
|
12.5.1 Static graph visualization |
|
|
406 | (2) |
|
12.5.2 Dynamic graph visualization |
|
|
408 | (1) |
|
|
409 | (8) |
|
|
411 | (6) |
Index |
|
417 | |