Muutke küpsiste eelistusi

E-raamat: Graph Drawing and Network Visualization: 28th International Symposium, GD 2020, Vancouver, BC, Canada, September 16-18, 2020, Revised Selected Papers

Edited by , Edited by
  • Formaat - EPUB+DRM
  • Hind: 55,56 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book constitutes the refereed proceedings of the 28th International Symposium on Graph Drawing and Network Visualization, GD 2020, which was held during September 16-18, 2020. The conference was planned to take place in Vancouver, Canada, but changed to an online format due to the COVID-19 pandemic.





The 29 full and 9 short papers presented in this volume were carefully reviewed and selected from 82 submissions. They were organized in topical sections named: gradient descent and queue layouts; drawing tree-like graphs, visualization, and special drawings of elementary graphs; restricted drawings of special graph classes; orthogonality; topological constraints; crossings, k-planar graphs; planarity; graphs drawing contest.
Gradient descent and queue layouts.- Graph drawing via gradient descent
(GD)².- Stochastic Gradient Descent Works Really Well for Stress
Minimization.- The Local Queue Number of Graphs with Bounded Treewidth.-
Parameterized Algorithms for Queue Layouts.- Lazy Queue Layouts of Posets.-
Drawing tree-like graphs, visualisation, and special drawings of elementary
graphs Improved Upper and Lower Bounds for LR Drawings of Binary Trees.- On
the Edge-Length Ratio of 2-Trees.- HOTVis: Higher-Order Time-Aware
Visualisation of Dynamic Graphs.- VAIM: Visual Analytics for Influence
Maximization.- Odd wheels are not odd-distance graphs.- Polygons with
Prescribed Angles in 2D and 3D.- Restricted drawings of special graph classes
On Mixed Linear Layouts of Series-Parallel Graphs.- Schematic Representation
of Large Biconnected Graphs.- Drawing Tree-Based Phylogenetic Networks with
Minimum Number of Crossings.- A Tipping Point for the Planarity of Small and
Medium Sized Graphs.- Orthogonality.- Characterization and a 2D Visualization
of B0-VPG Cocomparability Graphs.- Planar L-Drawings of Bimodal Graphs.-
Layered Drawing of Undirected Graphs with Generalized Port Constraints.- An
Integer-Linear Program for Bend-Minimization in Ortho-Radial Drawings.- On
Turn-Regular Orthogonal Representations.- Extending Partial Orthogonal
Drawings.- Topological constraints.- Topological Drawings meet Classical
Theorems from Convex Geometry.- Towards a characterization of stretchable
aligned graphs.- Exploring the Design Space of Aesthetics with the Repertory
Grid Technique.- Storyline Visualizations with Ubiquitous Actors.- Drawing
Shortest Paths in Geodetic Graphs.- Limiting Crossing Numbers for Geodesic
Drawings on the Sphere.- Crossings, k-planar graphs.- Crossings between
non-homotopic edges.- Improvement on the crossing number of crossing-critical
graphs.- On the Maximum Number of Crossings in Star-Simple Drawings of K n
with No Empty Lens.- Simple Topological Drawings of k-Planar Graphs.- 2-Layer
k-Planar Graphs: Density, Crossing Lemma, Relationships, and Pathwidth.-
Planarity.- Planar Rectilinear Drawings of Outerplanar Graphs in Linear
Time.- Rectilinear Planarity Testing of Plane Series-Parallel Graphs in
Linear Time.- New Quality Metrics for Dynamic Graph Drawing.- The Turing Test
for Graph Drawing Algorithms.- Plane Spanning Trees in Edge-Colored Simple
Drawings of Kn.- Augmenting Geometric Graphs with Matchings.- Graph Drawing
Contest.- Graph Drawing Contest Report.