Muutke küpsiste eelistusi

E-raamat: Graph-Powered Analytics and Machine Learning with TigerGraph

  • Formaat: 316 pages
  • Ilmumisaeg: 24-Jul-2023
  • Kirjastus: O'Reilly Media
  • Keel: eng
  • ISBN-13: 9781098106621
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 47,96 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 316 pages
  • Ilmumisaeg: 24-Jul-2023
  • Kirjastus: O'Reilly Media
  • Keel: eng
  • ISBN-13: 9781098106621
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

With the rapid rise of graph databases, organizations are now implementing advanced analytics and machine learning solutions to help drive business outcomes. This practical guide shows data scientists, data engineers, architects, and business analysts how to get started with a graph database using TigerGraph, one of the leading graph database models available.

You'll explore a three-stage approach to deriving value from connected data: connect, analyze, and learn. Victor Lee, Phuc Kien Nguyen, and Alexander Thomas present real use cases covering several contemporary business needs. By diving into hands-on exercises using TigerGraph Cloud, you'll quickly become proficient at designing and managing advanced analytics and machine learning solutions for your organization.

  • Use graph thinking to connect, analyze, and learn from data for advanced analytics and machine learning
  • Learn how graph analytics and machine learning can deliver key business insights and outcomes
  • Use five core categories of graph algorithms to drive advanced analytics and machine learning
  • Deliver a real-time 360-degree view of core business entities, including customer, product, service, supplier, and citizen
  • Discover insights from connected data through machine learning and advanced analytics

Victor Lee is Vice President of Machine Learning and AI at TigerGraph. His Ph.D. dissertation was on graph-based similarity and ranking. Dr. Lee has co-authored book chapters on decision trees and dense subgraph discovery. Teaching and training have also been central to his career journey, with activities ranging from developing training materials for chip design to writing the first version of TigerGraph's technical documentation, from teaching 12 years as a full-time or part-time classroom instructor to presenting numerous webinars and in-person workshops. Phuc Kien Nguyen is a data scientist at ABN Amro Bank in Amsterdam. For the past five years, he has helped develop solutions and machine learning models to combat financial crime. He holds an MSc degree in Information Architecture from Delft University of Technology. Next to his day-to-day job, he writes articles at Medium about data science and network analytics. He has a great passion for storytelling, especially through video games. In his spare time, he loves to play football and catch up with the latest development in technology.