|
|
xi | |
|
|
xiii | |
|
|
xvii | |
Introduction |
|
xix | |
|
Chapter 1 Basic Concepts in Optimization and Graph Theory |
|
|
1 | (12) |
|
|
1 | (1) |
|
|
2 | (1) |
|
1.3 Problem structure and variants |
|
|
2 | (2) |
|
1.4 Features of an optimization problem |
|
|
4 | (1) |
|
|
5 | (1) |
|
1.6 Basic concepts in graph theory |
|
|
6 | (6) |
|
|
7 | (1) |
|
1.6.2 Matrix representation of a graph |
|
|
7 | (1) |
|
|
8 | (1) |
|
1.6.4 Itineraries in a graph |
|
|
8 | (1) |
|
|
9 | (2) |
|
1.6.6 The bipartite graphs |
|
|
11 | (1) |
|
|
12 | (1) |
|
Chapter 2 Knapsack Problems |
|
|
13 | (18) |
|
|
13 | (1) |
|
2.2 Graph modeling of the knapsack problem |
|
|
14 | (1) |
|
|
14 | (1) |
|
|
15 | (1) |
|
|
16 | (1) |
|
2.6 Multiple knapsack problem |
|
|
17 | (2) |
|
|
17 | (1) |
|
|
18 | (1) |
|
2.7 Multidimensional knapsack problem |
|
|
19 | (2) |
|
|
19 | (1) |
|
|
20 | (1) |
|
2.8 Quadratic knapsack problem |
|
|
21 | (2) |
|
|
22 | (1) |
|
|
22 | (1) |
|
2.9 Quadratic multidimensional knapsack problem |
|
|
23 | (2) |
|
|
24 | (1) |
|
|
24 | (1) |
|
2.10 Solution approaches for knapsack problems |
|
|
25 | (3) |
|
2.10.1 The greedy algorithm |
|
|
25 | (1) |
|
2.10.2 A genetic algorithm for the KP |
|
|
26 | (2) |
|
|
28 | (3) |
|
Chapter 3 Packing Problems |
|
|
31 | (20) |
|
|
31 | (1) |
|
3.2 Graph modeling of the bin packing problem |
|
|
32 | (1) |
|
|
33 | (1) |
|
3.4 Basic bin packing problem |
|
|
33 | (3) |
|
3.4.1 Mathematical modeling of the BPP |
|
|
34 | (1) |
|
|
35 | (1) |
|
3.5 Variable cost and size BPP |
|
|
36 | (1) |
|
|
36 | (1) |
|
|
37 | (1) |
|
|
37 | (3) |
|
|
38 | (1) |
|
|
39 | (1) |
|
|
40 | (2) |
|
|
40 | (1) |
|
|
41 | (1) |
|
3.8 Solution approaches for the BPP |
|
|
42 | (6) |
|
3.8.1 The next-fit strategy |
|
|
42 | (1) |
|
3.8.2 The first-fit strategy |
|
|
43 | (1) |
|
3.8.3 The best-fit strategy |
|
|
44 | (1) |
|
3.8.4 The minimum bin slack |
|
|
44 | (2) |
|
3.8.5 The minimum bin slack' |
|
|
46 | (1) |
|
3.8.6 The least loaded heuristic |
|
|
46 | (1) |
|
3.8.7 A genetic algorithm for the bin packing problem |
|
|
47 | (1) |
|
|
48 | (3) |
|
Chapter 4 Assignment Problem |
|
|
51 | (18) |
|
|
51 | (1) |
|
4.2 Graph modeling of the assignment problem |
|
|
52 | (1) |
|
|
52 | (1) |
|
4.4 Mathematical formulation of the basic AP |
|
|
53 | (2) |
|
|
54 | (1) |
|
4.5 Generalized assignment problem |
|
|
55 | (2) |
|
|
56 | (1) |
|
4.6 The generalized multiassignment problem |
|
|
57 | (2) |
|
|
58 | (1) |
|
4.7 Weighted assignment problem |
|
|
59 | (1) |
|
4.8 Generalized quadratic assignment problem |
|
|
60 | (1) |
|
|
61 | (1) |
|
|
61 | (1) |
|
|
62 | (1) |
|
4.12 The multiresource GAP |
|
|
63 | (1) |
|
4.13 Solution approaches for solving the AP |
|
|
64 | (3) |
|
4.13.1 A greedy algorithm for the AP |
|
|
64 | (1) |
|
4.13.2 A genetic algorithm for the AP |
|
|
65 | (2) |
|
|
67 | (2) |
|
Chapter 5 The Resource Constrained Project Scheduling Problem |
|
|
69 | (14) |
|
|
69 | (1) |
|
5.2 Graph modeling of the RCPSP |
|
|
70 | (1) |
|
|
71 | (1) |
|
|
72 | (3) |
|
5.4.1 Mathematical modeling of the SM-RCPSP |
|
|
73 | (1) |
|
5.4.2 An example of an SM-RCPSP |
|
|
74 | (1) |
|
|
75 | (1) |
|
5.6 RCPSP with time windows |
|
|
75 | (1) |
|
5.7 Solution approaches for solving the RCPSP |
|
|
76 | (6) |
|
5.7.1 A greedy algorithm for the RCPSP |
|
|
76 | (1) |
|
5.7.2 A genetic algorithm for the RCPSP |
|
|
77 | (5) |
|
|
82 | (1) |
|
Chapter 6 Spanning Tree Problems |
|
|
83 | (30) |
|
|
83 | (1) |
|
6.2 Minimum spanning tree problem |
|
|
84 | (4) |
|
|
84 | (1) |
|
6.2.2 Mathematical formulation |
|
|
84 | (1) |
|
6.2.3 Algorithms for the MST problem |
|
|
85 | (3) |
|
6.3 Generalized minimum spanning tree problem |
|
|
88 | (12) |
|
|
90 | (1) |
|
6.3.2 Mathematical formulation |
|
|
90 | (3) |
|
6.3.3 Greedy approaches for the GMST problem |
|
|
93 | (3) |
|
6.3.4 Genetic algorithm for the GMST problem |
|
|
96 | (4) |
|
6.4 k-cardinality tree problem KCT |
|
|
100 | (6) |
|
|
100 | (1) |
|
|
100 | (2) |
|
|
102 | (1) |
|
6.4.4 Mathematical formulation |
|
|
103 | (1) |
|
6.4.5 Greedy approaches for the k-cardinality tree problem |
|
|
103 | (1) |
|
6.4.6 Minimum path approach |
|
|
104 | (1) |
|
6.4.7 A genetic approach for the k-cardinality problem |
|
|
105 | (1) |
|
6.5 The capacitated minimum spanning tree problem |
|
|
106 | (6) |
|
|
106 | (1) |
|
|
107 | (1) |
|
|
107 | (1) |
|
6.5.4 Solution approaches for the CMST problem |
|
|
108 | (4) |
|
|
112 | (1) |
|
Chapter 7 Steiner Problems |
|
|
113 | (12) |
|
|
113 | (1) |
|
7.2 The Steiner tree problem |
|
|
114 | (4) |
|
|
114 | (1) |
|
7.2.2 Problem formulation |
|
|
115 | (1) |
|
7.2.3 Constructive heuristics for the Steiner tree problem |
|
|
115 | (3) |
|
7.3 The price collecting Steiner tree problem |
|
|
118 | (5) |
|
|
118 | (1) |
|
|
118 | (1) |
|
7.3.3 Mathematical formulation |
|
|
118 | (2) |
|
7.3.4 A greedy approach to solve the PCSTP |
|
|
120 | (1) |
|
7.3.5 A genetic algorithm for the PCSTP |
|
|
121 | (2) |
|
|
123 | (2) |
|
Chapter 8 A DSS Design for Optimization Problems |
|
|
125 | (20) |
|
|
125 | (1) |
|
|
126 | (1) |
|
|
127 | (1) |
|
8.4 Architecture and design of a DSS |
|
|
128 | (3) |
|
8.4.1 Architecture of a DSS |
|
|
129 | (1) |
|
|
130 | (1) |
|
8.5 A DSS for the knapsack problem |
|
|
131 | (2) |
|
|
133 | (10) |
|
8.6.1 Statement and modeling of the CVRP |
|
|
136 | (1) |
|
|
137 | (1) |
|
8.6.3 Mathematical formulation of the DCVRP |
|
|
138 | (1) |
|
8.6.4 DCVRP-DSS interfaces |
|
|
139 | (2) |
|
8.6.5 A real application: the case of Tunisia |
|
|
141 | (2) |
|
|
143 | (2) |
Conclusion |
|
145 | (2) |
Glossary |
|
147 | (2) |
Bibliography |
|
149 | (6) |
Index |
|
155 | |