Muutke küpsiste eelistusi

E-raamat: Graphical Belief Modeling

  • Formaat: 432 pages
  • Ilmumisaeg: 26-Jan-2022
  • Kirjastus: Chapman & Hall/CRC
  • Keel: eng
  • ISBN-13: 9781351444460
  • Formaat - EPUB+DRM
  • Hind: 64,99 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: 432 pages
  • Ilmumisaeg: 26-Jan-2022
  • Kirjastus: Chapman & Hall/CRC
  • Keel: eng
  • ISBN-13: 9781351444460

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Describes graphical models using belief functions to represent uncertainty as an alternative approach to problems for which probability proves inadequate. Compares the two approaches to illustrate their relative strengths and weaknesses, discusses the algorithms used in the manipulation of graphical models, and demonstrates the application of belief modeling in an extended example of calculating the reliability of a complex system. The first application of the Dempster-Shafer belief functions to a practical model. Incorporates experience with the BELIEF software package. For researchers and graduate students in artificial intelligence and statistics. Annotation copyright Book News, Inc. Portland, Or.

This innovative volume explores graphical models using belief functions as a representation of uncertainty, offering an alternative approach to problems where probability proves inadequate. Graphical Belief Modeling makes it easy to compare the two approaches while evaluating their relative strengths and limitations.

The author examines both theory and computation, incorporating practical notes from the author's own experience with the BELIEF software package. As one of the first volumes to apply the Dempster-Shafer belief functions to a practical model, a substantial portion of the book is devoted to a single example--calculating the reliability of a complex system. This special feature enables readers to gain a thorough understanding of the application of this methodology.

The first section provides a description of graphical belief models and probablistic graphical models that form an important subset: the second section discusses the algorithm used in the manipulation of graphical models: the final segment of the book offers a complete description of the risk assessment example, as well as the methodology used to describe it.

Graphical Belief Modeling offers researchers and graduate students in artificial intelligence and statistics more than just a new approach to an old reliability task: it provides them with an invaluable illustration of the process of graphical belief modeling.

Muu info

Springer Book Archives
Introduction to Graphical Belief Models. Overview of Graphical Belief Models. Probability. Basic Belief Functions. Graphical Models. Manipulating Graphical Belief Models. Specifying and Storing Valuations. Belief Functions and Probabilities. The Fusion and Propagation Algorithm. Model Exploration. Belief Risk Assessment: An Example. Fault Trees. Belief Function Models for Components. Models for Simple Series and Parallel Systems. Information (Common Parameter) Dependence. Three Examples. Belief Risk Assessment and Public Policy. Appendices: Resources for Graphical Modelers. Annotated Examples. BELIEF Package and Other Software.
Almond, Russel .G