Muutke küpsiste eelistusi

E-raamat: Graphical Models: Representations for Learning, Reasoning and Data Mining

(European Centre for Soft Computing), (University of Magdeburg, Germany), (University of Magdeburg, Germany)
  • Formaat - PDF+DRM
  • Hind: 120,97 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Graphical models are often used in applied statistics and data mining. This work provides an introduction and overview of relational, probabilistic, and possibilistic networks used in data analysis and data mining, for researchers and practitioners who use graphical models in their work and for graduate students of applied statistics, computer science, and engineering. All of the necessary background is provided, with material on modeling under uncertainty and imprecision modeling, decomposition of distributions, graphical representation of distributions, applications relating to graphical models, and problems for further research. This second edition contains a new chapter on visualization, and new coverage of clique tree propagation and other evidence propagation methods. A companion web site includes exercises, teaching material, and open source software. Borgelt is affiliated with the European Center for Soft Computing, Spain. Annotation ©2009 Book News, Inc., Portland, OR (booknews.com)

Graphical models are of increasing importance in applied statistics, and in particular in data mining. Providing a self-contained introduction and overview to learning relational, probabilistic, and possibilistic networks from data, this second edition of Graphical Models is thoroughly updated to include the latest research in this burgeoning field, including a new chapter on visualization. The text provides graduate students, and researchers with all the necessary background material, including modelling under uncertainty, decomposition of distributions, graphical representation of distributions, and applications relating to graphical models and problems for further research.

Arvustused

The text provides graduate students, and researchers with all the necessary background material, including modelling under uncertainty, decomposition of distributions, graphical representation of distributions, and applications relating to graphical models and problems for further research.  (Zentralblatt Math, 1 August 2013)

"All of the necessary background is provided, with material on modeling under uncertainty and imprecision modeling, decomposition of distributions, graphical representation of distributions, applications relating to graphical models, and problems for further research." (Book News, December 2009)

Preface
1 Introduction
1.1 Data and Knowledge
1.2 Knowledge Discovery and Data Mining
1.3 Graphical Models
1.4 Outline of this Book
2 Imprecision and Uncertainty
2.1 Modeling Inferences
2.2 Imprecision and Relational Algebra
2.3 Uncertainty and Probability Theory
2.4 Possibility Theory and the Context Model
3 Decomposition
3.1 Decomposition and Reasoning
3.2 Relational Decomposition
3.3 Probabilistic Decomposition
3.4 Possibilistic Decomposition
3.5 Possibility versus Probability
4 Graphical Representation
4.1 Conditional Independence Graphs
4.2 Evidence Propagation in Graphs
5 Computing Projections
5.1 Databases of Sample Cases
5.2 Relational and Sum Projections
5.3 Expectation Maximization
5.4 Maximum Projections
6 Naive Classifiers
6.1 Naive Bayes Classifiers
6.2 A Naive Possibilistic Classifier
6.3 Classifier Simplification
6.4 Experimental Evaluation
7 Learning Global Structure
7.1 Principles of Learning Global Structure
7.2 Evaluation Measures
7.3 Search Methods
7.4 Experimental Evaluation
8 Learning Local Structure
8.1 Local Network Structure
8.2 Learning Local Structure
8.3 Experimental Evaluation
9 Inductive Causation
9.1 Correlation and Causation
9.2 Causal and Probabilistic Structure
9.3 Faithfulness and Latent Variables
9.4 The Inductive Causation Algorithm
9.5 Critique of the Underlying Assumptions
9.6 Evaluation
10 Visualization
10.1 Potentials
10.2 Association Rules
11 Applications
11.1 Diagnosis of Electrical Circuits
11.2 Application in Telecommunications
11.3 Application at Volkswagen
11.4 Application at DaimlerChrysler
A Proofs of Theorems
A.1 Proof of Theorem 4.1.2
A.2 Proof of Theorem 4.1.18
A.3 Proof of Theorem 4.1.20
A.4 Proof of Theorem 4.1.26
A.5 Proof of Theorem 4.1.28
A.6 Proof of Theorem 4.1.30
A.7 Proof of Theorem 4.1.31
A.8 Proof of Theorem 5.4.8
A.9 Proof of Lemma .2.2
A.10 Proof of Lemma .2.4
A.11 Proof of Lemma .2.6
A.12 Proof of Theorem 7.3.1
A.13 Proof of Theorem 7.3.2
A.14 Proof of Theorem 7.3.3
A.15 Proof of Theorem 7.3.5
A.16 Proof of Theorem 7.3.7
B Software Tools
Bibliography
Index
Christian Borgelt, is the Principal researcher at the European Centre for Soft Computing at Otto-von-Guericke University of Magdeburg.

Rudolf Kruse, Professor for Computer Science at Otto-von-Guericke University of Magdeburg.

Matthias Steinbrecher, Department of Knowledge Processing and Language Engineering, School of Computer Science, Universitätsplatz 2,?Magdeburg, Germany.