Muutke küpsiste eelistusi

E-raamat: Gravity: Newtonian, Post-Newtonian, Relativistic

(University of Guelph, Ontario), (University of Florida)
  • Formaat: EPUB+DRM
  • Ilmumisaeg: 29-May-2014
  • Kirjastus: Cambridge University Press
  • Keel: eng
  • ISBN-13: 9781139949231
Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 87,67 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: EPUB+DRM
  • Ilmumisaeg: 29-May-2014
  • Kirjastus: Cambridge University Press
  • Keel: eng
  • ISBN-13: 9781139949231
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

"This textbook explores approximate solutions to general relativity and their consequences. It offers a unique presentation of Einstein's theory by developing powerful methods that can be applied to astrophysical systems. Beginning with a uniquely thorough treatment of Newtonian gravity, the book develops post-Newtonian and post-Minkowskian approximation methods to obtain weak-field solutions to the Einstein field equations. The book explores the motion of self-gravitating bodies, the physics of gravitational waves, and the impact of radiative losses on gravitating systems. It concludes with a brief overview of alternative theories of gravity. Ideal for graduate courses on general relativity and relativistic astrophysics, the book examines real-life applications, such as planetary motion around the Sun, the timing of binary pulsars, and gravitational waves emitted by binary black holes. Text boxes explore related topics and provide historical context, and over 100 exercises present challenging tests of the material covered in the main text"--

Arvustused

'This remarkable book gives a superb pedagogical treatment of topics that are crucial for modern astrophysics and gravitational-wave science, but (sadly) are generally omitted from textbooks on general relativity, or treated much too briefly. With enthusiasm, I recommend this book to all astrophysicists, gravitational physicists, and students of these subjects.' Kip S. Thorne, California Institute of Technology 'This book is likely to become the bedside reading of all students and working scientists interested in Newtonian and Einsteinian gravity. Pedagogically written using fully modern notation, the book contains an extensive description of the post-Newtonian approximation, and is replete with useful results on gravitational waves and the motion of bodies under gravity.' Luc Blanchet, Institut d'Astrophysique de Paris 'I know of no other text that compares with this compendium of tricks for calculating observables in the large fraction of the universe that is not near an event horizon. Eric Poisson and Clifford Will, two world-renowned leaders in the field, have produced the ideal manual for anyone who wishes to do calculations relevant to current experiments or upcoming gravitational-wave observations. The clear, unified presentation in Gravity is a must-read for anyone wishing to absorb the material efficiently. a great textbook for a special-topics graduate course after the introductory relativity course, a crucial study aid for anyone learning about astrophysical relativity and gravitational waves, and a lifelong reference for career researchers.' Benjamin Owen, Physics Today

Muu info

Short-listed for PROSE Award for Textbook, Physical Sciences and Mathematics 2015.A unique graduate textbook that develops powerful approximation methods and their applications to real-life astrophysical systems.
List of boxes
viii
Preface xi
1 Foundations of Newtonian gravity
1(62)
1.1 Newtonian gravity
1(2)
1.2 Equations of Newtonian gravity
3(4)
1.3 Newtonian field equation
7(3)
1.4 Equations of hydrodynamics
10(17)
1.5 Spherical and nearly spherical bodies
27(18)
1.6 Motion of extended fluid bodies
45(15)
1.7 Bibliographical notes
60(1)
1.8 Exercises
61(2)
2 Structure of self-gravitating bodies
63(75)
2.1 Equations of internal structure
64(2)
2.2 Equilibrium structure of a spherical body
66(23)
2.3 Rotating self-gravitating bodies
89(16)
2.4 General theory of deformed bodies
105(14)
2.5 Tidally deformed bodies
119(16)
2.6 Bibliographical notes
135(1)
2.7 Exercises
135(3)
3 Newtonian orbital dynamics
138(51)
3.1 Celestial mechanics from Newton to Einstein
138(2)
3.2 Two bodies: Kepler's problem
140(14)
3.3 Perturbed Kepler problem
154(7)
3.4 Case studies of perturbed Keplerian motion
161(12)
3.5 More bodies
173(8)
3.6 Lagrangian formulation of Newtonian dynamics
181(3)
3.7 Bibliographical notes
184(1)
3.8 Exercises
185(4)
4 Minkowski spacetime
189(28)
4.1 Spacetime
189(14)
4.2 Relativistic hydrodynamics
203(5)
4.3 Electrodynamics
208(3)
4.4 Point particles in spacetime
211(3)
4.5 Bibliographical notes
214(1)
4.6 Exercises
214(3)
5 Curved spacetime
217(73)
5.1 Gravitation as curved spacetime
217(8)
5.2 Mathematics of curved spacetime
225(18)
5.3 Physics in curved spacetime
243(7)
5.4 Einstein field equations
250(2)
5.5 Linearized theory
252(12)
5.6 Spherical bodies and Schwarzschild spacetime
264(20)
5.7 Bibliographical notes
284(1)
5.8 Exercises
285(5)
6 Post-Minkowskian theory: Formulation
290(38)
6.1 Landau--Lifshitz formulation of general relativity
291(10)
6.2 Relaxed Einstein equations
301(7)
6.3 Integration of the wave equation
308(17)
6.4 Bibliographical notes
325(1)
6.5 Exercises
326(2)
7 Post-Minkowskian theory: Implementation
328(43)
7.1 Assembling the tools
329(12)
7.2 First iteration
341(3)
7.3 Second iteration: Near zone
344(17)
7.4 Second iteration: Wave zone
361(4)
7.5 Bibliographical notes
365(1)
7.6 Exercises
366(5)
8 Post-Newtonian theory: Fundamentals
371(43)
8.1 Equations of post-Newtonian theory
371(7)
8.2 Classic approach to post-Newtonian theory
378(3)
8.3 Coordinate transformations
381(19)
8.4 Post-Newtonian hydrodynamics
400(10)
8.5 Bibliographical notes
410(1)
8.6 Exercises
410(4)
9 Post-Newtonian theory: System of isolated bodies
414(66)
9.1 From fluid configurations to isolated bodies
414(9)
9.2 Inter-body metric
423(8)
9.3 Motion of isolated bodies
431(14)
9.4 Motion of compact bodies
445(9)
9.5 Motion of spinning bodies
454(20)
9.6 Point particles
474(4)
9.7 Bibliographical notes
478(1)
9.8 Exercises
479(1)
10 Post-Newtonian celestial mechanics, astrometry and navigation
480(59)
10.1 Post-Newtonian two-body problem
481(11)
10.2 Motion of light in post-Newtonian gravity
492(17)
10.3 Post-Newtonian gravity in timekeeping and navigation
509(11)
10.4 Spinning bodies
520(14)
10.5 Bibliographical notes
534(1)
10.6 Exercises
535(4)
11 Gravitational waves
539(85)
11.1 Gravitational-wave field and polarizations
540(10)
11.2 The quadrupole formula
550(14)
11.3 Beyond the quadrupole formula: Waves at 1.5PN order
564(38)
11.4 Gravitational waves emitted by a two-body system
602(13)
11.5 Gravitational waves and laser interferometers
615(3)
11.6 Bibliographical notes
618(1)
11.7 Exercises
619(5)
12 Radiative losses and radiation reaction
624(75)
12.1 Radiation reaction in electromagnetism
625(9)
12.2 Radiative losses in gravitating systems
634(7)
12.3 Radiative losses in slowly-moving systems
641(9)
12.4 Astrophysical implications of radiative losses
650(7)
12.5 Radiation-reaction potentials
657(9)
12.6 Radiation reaction of fluid systems
666(7)
12.7 Radiation reaction of N-body systems
673(3)
12.8 Radiation reaction in alternative gauges
676(7)
12.9 Orbital evolution under radiation reaction
683(9)
12.10 Bibliographical notes
692(2)
12.11 Exercises
694(5)
13 Alternative theories of gravity
699(61)
13.1 Metric theories and the strong equivalence principle
700(3)
13.2 Parameterized post-Newtonian framework
703(18)
13.3 Experimental tests of gravitational theories
721(11)
13.4 Gravitational radiation in alternative theories of gravity
732(7)
13.5 Scalar--tensor gravity
739(16)
13.6 Bibliographical notes
755(1)
13.7 Exercises
756(4)
References 760(11)
Index 771
Eric Poisson is Professor of Physics at the University of Guelph. He is a Fellow of the American Physical Society and serves on the editorial boards of Physical Review Letters and Classical and Quantum Gravity. Clifford M. Will is Distinguished Professor of Physics at the University of Florida and J. S. McDonnell Professor Emeritus at Washington University in St Louis. He is a member of the US National Academy of Sciences, and Editor-in-Chief of Classical and Quantum Gravity. He is well known for his ability to bring science to broad audiences.