Muutke küpsiste eelistusi

E-raamat: Green Stormwater Infrastructure Fundamentals and Design

(University of Maryland, College Park, MD), (Villanova University, Villanova, PA), (North Carolina State University, Raleigh, NC)
  • Formaat: EPUB+DRM
  • Ilmumisaeg: 07-Jun-2022
  • Kirjastus: John Wiley & Sons Inc
  • Keel: eng
  • ISBN-13: 9781119338024
  • Formaat - EPUB+DRM
  • Hind: 149,44 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: EPUB+DRM
  • Ilmumisaeg: 07-Jun-2022
  • Kirjastus: John Wiley & Sons Inc
  • Keel: eng
  • ISBN-13: 9781119338024

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Green Stormwater Infrastructure Fundamentals and Design Discover novel stormwater control measures to make for a greener tomorrow!

The protection of our aquatic resources is growing in importance as the effects of climate change and continued urbanization are felt throughout the world. While most rain that falls onto vegetated spaces infiltrates the soil, rain that falls onto impervious surfaces will not, increasing downstream flooding and erosion and causing impaired water quality. Impervious surfaces such as road infrastructure, rooftops, and parking areas all increase runoff and mobilize many pollutants that have deposited on these surfaces that are then carried into our waterways. Proper management of this stormwater through green infrastructure is essential to address these challenges and reduce the environmental and ecological impacts brought about by this runoff.

This book brings into focus resilient stormwater control measures (SCMs) for the reduction of stormwater flows and associated pollutants that can detrimentally impact our local environmental and ecological systems. These interventions are green infrastructure based, utilizing natural hydrologic and environmental features using soil and vegetation to manage stormwater. These technologies include water harvesting, bioretention and bioinfiltration, vegetated swales and filter strips, permeable pavements, sand filters, green roofs, and stormwater wetlands, among others. The basic science and engineering of these technologies is discussed, including performance information and best maintenance practices.

Green Stormwater Infrastructure readers will also find:





Research-informed resilient SCM design fundamentals Diagrams developed by the authors to enhance understanding Case studies to illustrate the points elucidated in the book End-of-chapter problems with a separate solutions manual

Green Stormwater Infrastructure is an ideal resource for environmental, civil, and biological engineers and environmental scientists in the consulting field. Landscape architects, managers and engineers of watershed districts, and members of federal, state, and local governmental agenciesespecially those in the departments of environmental protection and transportationwill find many uses for this guidebook. It will also be of interest to professors, upper-level undergraduates and graduate students in environmental, civil, and biological engineering programs.
Preface xix
About the Authors xxi
Acknowledgements xxiii
About the Companion Website xxv
1 Introduction to Urban Stormwater and Green Stormwater Infrastructure
1(20)
1.1 Population and Urban Infrastructure
1(1)
1.2 Impacts of Urbanization
2(5)
1.3 The US Regulatory Environment
7(5)
1.4 Urban Stormwater Management
12(3)
1.4.1 Flood Control
12(1)
1.4.2 Peak Flow Control
13(1)
1.4.3 Watershed Approach to Peak Flow
14(1)
1.4.4 Water-Quality Control
14(1)
1.5 Climate Change and Stationarity
15(1)
1.6 Green Stormwater Infrastructure
15(2)
1.7 Stormwater Control Measures
17(1)
1.8 Stormwater Infrastructure and Equity
17(4)
References
18(1)
Problems
19(2)
2 Precipitation: The Stormwater Driver
21(12)
2.1 Introduction
21(1)
2.2 The Urban Hydrologic Cycle
21(2)
2.3 Precipitation
23(1)
2.4 Precipitation Depths
24(2)
2.5 Rainfall Patterns
26(1)
2.6 Inter-event Interval
27(1)
2.1 Extreme Event Precipitation
27(2)
2.8 Introducing the Rainfall-Runoff Relationship
29(1)
2.9 Precipitation and Water Quality
30(1)
2.10 Climate Change
31(2)
References
31(1)
Problems
31(2)
3 Water Quality
33(20)
3.1 Introduction
33(1)
3.2 Designated Water Uses
33(1)
3.3 Water-Quality Parameters and Measures
34(1)
3.4 Temperature
34(1)
3.5 Ph
35(1)
3.6 Dissolved Oxygen
35(2)
3.7 Turbidity and Particulate Matter
37(3)
3.8 Biodegradable Organic Matter or "Oxygen Demand"
40(1)
3.9 Nitrogen
41(3)
3.9.1 Nitrate
41(1)
3.9.2 Nitrite
42(1)
3.9.3 Ammonium
42(1)
3.9.4 Organic Nitrogen
43(1)
3.9.5 Nitrogen Measurements
43(1)
3.10 Phosphorus
44(2)
3.11 Heavy Metals
46(1)
3.12 Hydrocarbons and Other Organic Pollutants
46(2)
3.12.1 Hydrocarbons
46(1)
3.12.2 Pesticides and Other Organic Chemicals
47(1)
3.13 Pathogens
48(1)
3.14 Dissolved Solids and Conductivity
49(1)
3.15 Trash
50(3)
References
50(1)
Problems
50(3)
4 Ecosystem Services
53(12)
4.1 What Are Ecosystem Services?
53(3)
4.2 Ecosystem Services and Stormwater Management
56(1)
4.3 Stormwater Wetlands and Ecosystem Services
56(1)
4.4 Regulation Services
56(2)
4.4.1 Water Treatment
56(1)
4.4.2 Hydrologic Regulation
56(1)
4.4.3 Climate Regulation
57(1)
4.4.4 Air Quality Regulation
57(1)
4.5 Habitat Services
58(1)
4.6 Production Services
59(1)
4.7 Information Services
60(1)
4.8 Designing SCMs for Ecosystem Services
61(4)
References
61(2)
Problems
63(2)
5 Stormwater Quality
65(24)
5.1 Introduction
65(1)
5.2 Event Mean Concentrations
66(2)
5.3 Urban Runoff Pollutant Concentrations
68(6)
5.3.1 Particulate Matter and Particle Size Distributions
70(1)
5.3.2 Nitrogen and Nitrogen Speciation
71(1)
5.3.3 Phosphorus and Phosphorus Speciation
72(1)
5.3.4 Heavy Metals Concentrations and Speciation
73(1)
5.3.5 PAH and PCBs
74(1)
5.4 Urban Stormwater Pollutant Sources
74(2)
5.5 Pollutant Buildup and Wash Off
76(7)
5.5.1 Pollutographs
76(1)
5.5.2 First Flush
76(7)
5.6 Annual Pollutant Loads
83(1)
5.7 Sampling and Measurements
84(1)
5.8 A Note about Stormwater Quality
84(5)
References
84(3)
Problems
87(2)
6 Watershed Hydrology
89(38)
6.1 Introduction
89(1)
6.2 Precipitation
90(8)
6.2.1 Design Storms
91(6)
6.2.2 Continuous Simulation
97(1)
6.3 Watershed Hydrology
98(15)
6.3.1 Drainage Area Delineation
98(1)
6.3.2 Interception and Depression Storage
99(1)
6.3.3 The Simple Method
100(1)
6.3.4 NRCS Curve Number Method
101(5)
6.3.5 NRCS "Time of Concentration"
106(2)
6.3.6 NRCS Unit Hydrograph
108(4)
6.3.7 Creating the Storm Hydrograph
112(1)
6.4 Peak Flow Methods
113(2)
6.4.1 The Rational Method
113(2)
6.4.2 The NRCS Unit Hydrograph Method
115(1)
6.5 Watershed and SCM Hydraulics
115(12)
6.5.1 Open Channel Flow
115(2)
6.5.2 Orifices
117(1)
6.5.3 Weirs
118(2)
References
120(1)
Problems
121(6)
7 SCM Hydrologic Unit Processes
127(26)
7.1 Introduction
127(1)
7.2 SCM Soil Physics and Infiltration
128(13)
7.2.1 Soil Texture
129(1)
7.2.2 Soil-Water Interactions
130(4)
7.2.3 Soil Hydraulic Properties
134(3)
7.2.4 Green and Ampt Model
137(3)
7.2.5 Karst Areas
140(1)
7.3 Evapotranspiration
141(6)
7.4 Soil Moisture Accounting
147(1)
7.5 Storage Indication Routing
148(1)
7.6 Computer-Based Stormwater Models
148(5)
References
149(1)
Problems
150(3)
8 Unit Processes for Stormwater Quality Mitigation
153(30)
8.1 Introduction
153(1)
8.2 Reactions, Reactors, and Reactor Engineering
154(4)
8.3 Removal of Particulate Matter
158(5)
8.3.1 Sedimentation
158(3)
8.3.2 Filtration
161(2)
8.4 Removal of Dissolved Pollutants: Adsorption
163(8)
8.4.1 Adsorption Equilibrium Models
164(1)
8.4.2 Batch Adsorption
165(3)
8.4.3 Adsorption Column Dynamics
168(1)
8.4.4 Adsorption of Hydrophobic Organic Compounds
169(1)
8.4.5 Adsorption of Heavy Metals
170(1)
8.4.6 Adsorption of Phosphorus
170(1)
8.4.7 Adsorption of Ammonium
171(1)
8.5 Leaching Processes
171(1)
8.6 Microbiological Processes
171(4)
8.6.1 Microbial/Pathogen Survival
172(1)
8.6.2 Organic Matter Degradation
172(1)
8.6.3 Nitrification
173(1)
8.6.4 Denitriflcation
174(1)
8.7 Phytobiological Processes
175(1)
8.8 Heat Transfer
176(7)
References
177(1)
Problems
178(5)
9 Stormwater Performance Measures and Metrics
183(18)
9.1 Introduction
183(1)
9.2 Reference Conditions and Defining Thresholds
184(1)
9.3 Volume Control
184(2)
9.3.1 Runoff Depth
184(1)
9.3.2 Curve Number Reduction
185(1)
9.4 Peak Flow, Flow, and Geomorphology
186(3)
9.5 Pollutant Percent Removal
189(1)
9.6 Chesapeake Bay Retrofit Curves
190(1)
9.7 Target Effluent Concentrations
190(2)
9.8 Annual Mass Load
192(1)
9.9 Probability and Exceedance
193(2)
9.10 Pollutant Durations
195(6)
References
198(1)
Problems
199(2)
10 Preventing Runoff and Stormwater Pollution
201(20)
10.1 Introduction
201(1)
10.2 Site Design and Low Impact Development
201(2)
10.3 Compacted Urban Surfaces
203(3)
10.3.1 Avoiding Compaction and Promoting Infiltration
204(1)
10.3.2 Soil Restoration
204(1)
10.3.3 De-paving
205(1)
10.3.4 Removing Abandoned Housing
205(1)
10.4 Street Trees
206(1)
10.5 Disconnecting Impervious Surfaces
207(6)
10.5.1 Defining Disconnected Impervious Surface
208(1)
10.5.2 Calculating the Benefit of Disconnecting Imperviousness
208(2)
10.5.3 Design
210(2)
10.5.4 Water-Quality Benefits
212(1)
10.5.5 Performance Results
212(1)
10.6 Pollution Prevention
213(4)
10.6.1 Street Sweeping
213(3)
10.6.2 Product Prohibition
216(1)
10.7 Education
217(4)
References
217(1)
Problems
218(3)
11 Green Infrastructure Stormwater Control
221(18)
11.1 Introduction
221(1)
11.2 Fundamentals of Stormwater Control Measures
221(1)
11.3 Designing to Climate and the Watershed
222(1)
11.4 Types of Stormwater Control Measures
223(1)
11.5 Nonvegetated Stormwater Control Measures
224(1)
11.5.1 Infiltration Basins and Rock Beds
224(1)
11.5.2 Permeable Pavements
224(1)
11.5.3 Cisterns and Rain Barrels
225(1)
11.5.4 Sand Filters
225(1)
11.6 Vegetated Stormwater Control Measures
225(5)
11.6.1 Vegetation Challenges
227(2)
11.6.2 Green Roofs
229(1)
11.6.3 Bioretention
230(1)
11.6.4 Vegetated Swales and Filter Strips
230(1)
11.6.5 Stormwater Wetlands
230(1)
11.7 Selecting the SCM Site
230(1)
11.8 Stormwater Treatment Media
231(2)
11.8.1 Rock, Gravel, and Coarse Sand
232(1)
11.8.2 Silts and Clays
232(1)
11.8.3 Organic Media
232(1)
11.9 Volumetric Storage
233(1)
11.10 Drains and Underdrains
234(1)
11.11 "Irreducible Concentrations"
235(4)
References
237(1)
Problems
238(1)
12 Inlets, Bypasses, Pretreatment, and Proprietary Devices
239(12)
12.1 Introduction
239(1)
12.2 Inlets
239(1)
12.3 Stormwater Bypass
240(1)
12.4 Catch Basin and Inlet Filters
241(1)
12.5 Pretreatment
242(1)
12.6 Forebays
242(4)
12.6.1 Forebay Design
243(2)
12.6.2 Forebay Maintenance
245(1)
12.7 Proprietary Devices
246(2)
12.8 Accumulated Trash and Sediment
248(3)
References
249(1)
Problems
249(2)
13 Green Roofs
251(26)
13.1 Introduction
251(1)
13.2 Climate and Green Roofs
251(1)
13.3 Types of Roofs
252(4)
13.3.1 Green Roofs
252(1)
13.3.2 Blue Roofs
253(3)
13.4 Extensive Green Roof Components
256(3)
13.5 Hydrologic Design Strategies
259(5)
13.5.1 Rainfall Capture
259(3)
13.5.2 Evapotranspiration
262(2)
13.6 Water Quality Design
264(2)
13.6.1 Phosphorus
265(1)
13.6.2 Nitrogen
266(1)
13.6.3 Metals
266(1)
13.7 Inspection and Maintenance
266(1)
13.8 Other Green Roof Benefits
266(11)
References
267(1)
Problems
268(9)
14 Rainwater Harvesting
277(16)
14.1 Introduction
271(1)
14.2 Potential as a Water Resource
272(1)
14.3 Harvested Roof Water Quality
273(1)
14.4 Rain Barrels
274(1)
14.5 Rainwater Harvesting Regulations
275(2)
14.5.1 Non-stormwater Regulations
276(1)
14.5.2 Stormwater Regulations
276(1)
14.6 Designing Rainwater Harvesting Systems
277(5)
14.6.1 General Characteristics and Purpose
277(1)
13.6.2 Rainwater Storage Sizing Techniques
278(1)
14.6.3 Design
279(3)
14.7 Designing for Enhanced Stormwater Performance
282(6)
14.7.1 Passive Release Mechanism
282(2)
14.7.2 Active Release Mechanism
284(1)
14.7.3 Alternative Approaches for Irrigation-based Systems
285(1)
14.7.4 Designing an Infiltration or Filtration Area
286(2)
14.8 Treatment for High-quality Use
288(1)
14.9 Inspection and Maintenance
289(4)
References
289(1)
Problems
290(3)
15 Permeable Pavement
293(26)
15.1 Introduction
293(2)
15.2 Types of Permeable Pavements
295(3)
15.3 Permeable Pavement Installation
298(1)
15.4 Designing for Infiltration and Percolation
298(4)
15.4.1 Surface Infiltration
299(1)
15.4.2 Run-on Ratio
299(2)
15.4.3 Depth/Volume of Storage Layer
301(1)
15.4.4 Underdrain Need
301(1)
15.4.5 Underdrain Configuration
301(1)
15.4.6 In Situ Soils
302(1)
15.5 Permeable Pavement Hydrologic Design Strategies
302(3)
15.6 Permeable Pavement Hydrology
305(2)
15.6.1 Hydrographs
305(1)
15.6.2 Curve Numbers and Storage
306(1)
15.6.3 Evaporation
307(1)
15.7 Water Quality Design
307(5)
15.7.1 Particulate Matter
308(1)
15.7.2 Metals
308(1)
15.7.3 Nutrients
308(1)
15.7.4 Hydrocarbons
309(1)
15.7.5 Ph
309(1)
15.7.6 Thermal Pollution (Temperature)
310(1)
15.7.7 Pollutant Loads
310(1)
15.7.8 Long-term Pollutant Fate
311(1)
15.8 Maintenance
312(1)
15.9 Design Summary
312(1)
15.10 Permeable Pavement Cost Factors
312(2)
15.11 Permeable Friction Course
314(5)
References
315(2)
Problems
317(2)
16 Infiltration Trenches and infiltration Basins
319(12)
16.1 Introduction
319(1)
16.2 Types of Basins
319(2)
16.3 Mechanisms of Treatment
321(2)
16.4 Infiltration
323(1)
16.5 Surface Infiltration Basins
323(3)
16.6 Infiltration Trench and Subsurface Infiltration Basin Design
326(1)
16.7 Infiltration Trench and Basin Performance
327(1)
16.8 Inspection and Maintenance
328(3)
References
329(1)
Problems
329(2)
17 Sand Filters
331(12)
17.1 Introduction
331(1)
17.2 Basic Sand Filter Operation
331(1)
17.3 Sand Filter Options and Configurations
331(2)
17.4 Sand Filter Design
333(2)
17.5 Water Quality Performance
335(1)
17.5.1 Particulate Matter Removal
335(1)
17.5.2 Dissolved Pollutant Removal
336(1)
17.6 Sand Filter Headloss
336(1)
17.7 Solids Accumulation and Clogging
337(2)
17.8 Sorptive and Reactive Media
339(1)
17.9 Geotextile Filters
339(1)
17.10 Inspection and Maintenance
340(3)
References
340(1)
Problems
341(2)
18 Bioretention
343(50)
18.1 Introduction
343(1)
18.2 Bioretention Classifications
344(1)
18.3 Bioretention Components
345(1)
18.4 Siting and Configuration
346(2)
18.5 Bioretention Flow Entrances, Inlets, and Forebays
348(2)
18.6 Storage Bowl
350(1)
18.7 Bioretention Design: Static Storage and Hydrologic Performance
351(2)
18.8 Dynamic Storage
353(1)
18.9 The Media
354(1)
18.9.1 Rain Gardens
354(1)
18.9.2 Standard Media
354(1)
18.9.3 Surface Mulch Layer
354(1)
18.10 Evapotranspiration
355(1)
18.11 The Media and Particulate Matter Removal
356(2)
18.12 The Media and Heavy Metals Removal
358(1)
18.13 The Media and Organic Pollutants Removal
359(1)
18.14 The Media and Phosphorus Removal
360(6)
18.14.1 Phosphorus Removal in Bioretention
361(1)
18.14.2 Quantifying Phosphorus Removal
362(1)
18.14.3 Media Enhancements for Phosphorus Removal
363(3)
18.15 The Media and Nitrogen Removal
366(4)
18.15.1 Nitrogen Processing in Standard Bioretention Systems
366(2)
18.15.2 Enhanced Nitrogen Removal
368(1)
18.15.3 Biological Nitrogen Transformations
368(2)
18.16 The Media and Bacteria Removal
370(1)
18.17 Vegetation
370(3)
18.18 The Underdrain and Subsurface Storage
373(3)
18.19 Internal Water Storage and Nitrogen Removal
376(1)
18.20 Bioretention Pollutant Load Reductions
377(3)
18.21 Bioretention Exfiltration and Groundwater
380(1)
18.22 Inspection and Maintenance
380(13)
References
381(5)
Problems
386(7)
19 Swales, Filter Strips, and Level Spreaders
393(28)
19.1 Introduction
393(1)
19.2 Characteristics
393(1)
19.2.1 Swales
393(1)
19.2.2 Filter Strips and Level Spreaders
393(1)
19.3 Swale Design
394(5)
19.3.1 Configurations
396(1)
19.3.2 Hydraulic Design
396(3)
19.4 Filter Strip Design
399(1)
19.4.1 Configurations
399(1)
19.4.2 Flow Conveyance
399(1)
19.5 Filter Strips Conveying to Swales
400(2)
19.6 Water Quality Considerations
402(8)
19.6.1 Designing for Pollutant Capture: Length of Swale
402(1)
19.6.2 Designing for Particulate Matter Removal
402(3)
19.6.3 Designing for Particulate Matter Removal with Particle-size Distribution Available
405(1)
19.6.4 Designing for Metals Removal
406(2)
19.6.5 Filtration through Swales and Filter Strips
408(1)
19.6.6 Check Dams
409(1)
19.7 Swale Performance
410(4)
19.7.1 Hydrologic Considerations
410(2)
19.7.2 Water Quality Considerations
412(2)
19.8 Construction, Inspection, and Maintenance
414(1)
19.9 Summary
414(7)
References
415(1)
Problems
416(5)
20 Stormwater Wetlands
421(30)
20.1 Introduction
421(1)
20.2 Sizing Stormwater Wetlands
422(1)
20.3 Stormwater Wetland Features and Design
423(5)
20.3.1 Zone I--Deep Pools
424(2)
20.3.2 Zone II--Deep to Shallow Water Transition Zone (Transition Zone)
426(1)
20.3.3 Zone III--Shallow Water Zone
426(1)
20.3.4 Zone IV--Temporary Inundation Zone
427(1)
20.3.5 Zone V--Upper Bank
428(1)
20.4 Wetland Vegetation
428(2)
20.5 Wetland Soils and Vegetation Growth Media
430(1)
20.6 Wetland Outlet Configuration
431(6)
20.7 Wetland Construction
437(1)
20.8 Wetland Variations
437(2)
20.8.1 Wetland Design for Cold Water Species (Salmonids)
437(1)
20.8.2 Off-line Stormwater Wetlands
437(1)
20.8.3 Wetlands with High Flow Bypass
438(1)
20.9 Water Quality Improvements in Stormwater Wetlands
439(3)
20.10 Other Stormwater Wetland Designs
442(5)
20.10.1 Submerged Gravel Wetlands
442(1)
20.10.2 Ponds Transitioning to Wetlands
443(1)
20.10.3 Floating Wetlands
444(3)
20.11 Inspection and Maintenance
447(4)
References
447(2)
Problems
449(2)
21 Putting It All Together
451(20)
21.1 Introduction
451(1)
21.2 SCM Hydrologic Performance Summary
451(2)
21.3 SCM Water Quality Performance Summary
453(2)
21.3.1 Green Roofs and Water Harvesting
453(1)
21.3.2 Permeable Pavements
453(1)
21.3.3 Infiltration Basins
454(1)
21.3.4 Sand Filters
454(1)
21.3.5 Bioretention
454(1)
21.3.6 Vegetated Swales
455(1)
21.3.7 Stormwater Wetlands
455(1)
21.4 Treatment Trains
455(1)
21.5 SCM Treatment Train Examples
456(6)
21.5.1 Treatment Trains within Individual SCMs
456(1)
21.5.2 Incorporating Treatment Trains in Traditional SCMs
457(1)
21.5.3 SCMs in Series
457(5)
21.6 Quantifying Performance in SCM Treatment Trains
462(1)
21.7 Real Time Controls
463(1)
21.8 Designing for Climate Change
464(2)
21.9 Greener Infrastructure: What Does the Future Hold?
466(5)
References
467(2)
Problems
469(2)
Appendix A 471(2)
Index 473
Allen P. Davis, PhD, PE, D. WRE, F. EWRI, F. ASCE, is the Charles A. Irish Sr. Chair in Civil Engineering and Professor in the Department of Civil and Environmental Engineering, and Affiliate Professor in Plant Science and Landscape Architure at the University of Maryland, College Park, MD.

William F. Hunt III, PhD, PE, D. WRE, M. ASCE is a William Neal Reynolds Distinguished University Professor and Extension Specialist in the Department of Biological and Agricultural Engineering at North Carolina State University, Raleigh, NC. He is the leader of the Stormwater Engineering Group at NC State.

Robert G. Traver, PhD, PE, D. WRE, F. EWRI, F. ASCE, is a Professor in the Department of Civil and Environmental Engineering at Villanova University, Villanova, PA, and former Edward A. Daylor Chair in Civil Engineering. He is the Director of the Villanova Center for Resilient Water Systems, and the Villanova Urban Stormwater Partnership.