Muutke küpsiste eelistusi

E-raamat: Groundwater Remediation: A Practical Guide for Environmental Engineers and Scientists

  • Formaat: PDF+DRM
  • Ilmumisaeg: 23-Jun-2017
  • Kirjastus: Wiley-Scrivener
  • Keel: eng
  • ISBN-13: 9781119407720
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 254,35 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: PDF+DRM
  • Ilmumisaeg: 23-Jun-2017
  • Kirjastus: Wiley-Scrivener
  • Keel: eng
  • ISBN-13: 9781119407720
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Written by one of the world's foremost authorities on the subject, this is the most comprehensive and in-depth treatment available to environmental engineers and scientists for the remediation of groundwater, one of the earth's most precious resources.

Groundwater is one of the Earth's most precious resources. We use it for drinking, bathing, and many other purposes. Without clean water, humans would cease to exist. Unfortunately, because of ignorance or lack of caring, groundwater is often contaminated through industrialization, construction or any number of other ways. It is the job of the environmental engineer to remediate the contaminated groundwater and make what has been tainted safe again.Selecting the proper remediation strategy and process is the key to moving forward, and, once this process has been selected, it must be executed properly, taking into consideration the costs, the type of contaminants that are involved, time frames, and many other factors.

This volume provides a broad overview of the current and most widely applied remedial strategies. Instead of discussing these strategies in a generic way, the volume is organized by focusing on major contaminants that are of prime focus to industry and municipal water suppliers. The specific technologies that are applicable to the chemical contaminants discussed in different chapters are presented, but then cross-referenced to other chemical classes or contaminants that are also candidates for the technologies. The reader will also find extensive cost guidance in this volume to assist in developing preliminary cost estimates for capital equipment and operations & maintenance costs, which should be useful in screening strategies.

The eight chapters cover all of the major various types of contaminants and their industrial applications, providing a valuable context to each scenario of contamination. This is the most thorough and up-to-date volume available on this important subject, and it is a must-have for any environmental engineer or scientist working in groundwater remediation.
Preface xi
About the Author xv
1 Conducting Groundwater Quality Investigations
1(36)
1.1 Introduction
1(1)
1.2 Evolution of Site Assessments
2(12)
1.3 Technology Limitations and Cleanup Goals
14(1)
1.4 Conceptual Models
14(4)
1.4.1 Source and Release Information
15(1)
1.4.2 Geologic and Hydrogeologic Characterization
16(1)
1.4.3 Contaminant Distribution, Transport and Fate
17(1)
1.4.4 Geochemistry Impacting Natural Biodegradation
17(1)
1.5 Risk Assessment Concepts
18(2)
1.6 Institutional Controls
20(1)
1.7 Risk-Based Cleanup Goals and Screening Level Evaluations
20(5)
1.8 Assessing Plume Migration Potential
25(12)
2 The Family of DNAPLs
37(32)
2.1 Denning DNAPL
37(1)
2.2 Chemicals and Origins
38(11)
2.2.1 Creosote and Coal Tars
38(3)
2.2.2 Polychlorinated Biphenyls
41(3)
2.2.3 Chlorinated Solvents
44(4)
2.2.4 Mixtures
48(1)
2.3 DNAPL Behavior
49(10)
2.3.1 General Behavior and Concepts
49(7)
2.3.2 Important Parameters for Site Characterization
56(3)
2.4 Overview of Remediation Strategies
59(10)
2.4.1 Remediation Goals
59(4)
2.4.2 Technologies
63(1)
2.4.2.1 Pump-and-Treat
63(1)
2.4.2.2 Permeable Reactive Barriers
63(1)
2.4.2.3 Physical Barriers
64(1)
2.4.2.4 Enhanced Biodegradation
64(1)
2.4.2.5 Thermal Technologies
64(1)
2.4.2.6 Chemical Flushing
65(1)
2.4.2.7 Excavation and Removal
65(1)
2.4.2.8 Soil Vacuum Extraction
66(1)
2.4.2.9 Water Flooding
66(1)
2.4.2.10 Air Sparging
66(3)
3 Hydrocarbons
69(26)
3.1 Fate and Transport
69(5)
3.1.1 General
69(1)
3.1.2 Advective Transport
70(1)
3.1.3 Dispersion
70(1)
3.1.4 Sorption
71(2)
3.1.5 Dilution and Recharge
73(1)
3.1.6 Volatilization
73(1)
3.2 Gasoline Compounds
74(5)
3.2.1 General Description
74(1)
3.2.2 The BTEX Compounds and MTBE
74(1)
3.2.3 Properties of VOCs
75(1)
3.2.4 Degradation
75(2)
3.2.5 Half-Lifes
77(2)
3.3 Pump and Treat
79(16)
3.3.1 Concept
79(6)
3.3.2 Non-Aqueous Phase Liquids
85(1)
3.3.3 Contaminant Desorption and Precipitate Dissolution
86(1)
3.3.4 Remedial Technologies
87(2)
3.3.5 EPA Cost Data for Pump-and-Treat
89(6)
4 1,4-Dioxane
95(22)
4.1 Overview
95(3)
4.2 Properties, Fate and Transport
98(5)
4.3 Health Effects and Regulations
103(1)
4.4 Remediation Technologies
104(13)
4.4.1 Advanced Oxidation (Ex Situ)
109(4)
4.4.2 Adsorption (GAC) (Ex Situ)
113(1)
4.4.3 Bioremediation
113(1)
4.4.4 Treatment in Soil
114(3)
5 Perfluorinated Compounds (PFCS)
117(46)
5.1 Overview
117(1)
5.2 Origins of the Contaminants
118(3)
5.3 PFAs Properties and Structures
121(9)
5.3.1 General Description
121(2)
5.3.2 Variations of PFAS
123(3)
5.3.3 PFOS
126(3)
5.3.4 PFOA
129(1)
5.4 Environmental Fate and Transport
130(14)
5.5 Groundwater Contamination
144(5)
5.6 Water Treatment
149(8)
5.7 Estimating Carbon Treatement Costs
157(6)
6 Chlorinated Solvents
163(70)
6.1 Physico-Chemical Properties of Chlorinated Solvents
163(4)
6.2 Origins of Groundwater Contamination
167(1)
6.3 Fate and Transport
168(20)
6.3.1 Properties
168(2)
6.3.2 Degradation and Daughter Products
170(3)
6.3.3 Biodegradation Half-Life
173(12)
6.3.4 DNAPL Migration
185(3)
6.4 Groundwater Remediation Strategies
188(29)
6.4.1 Preliminary Considerations
188(7)
6.4.2 Soil Excavation, Treatment and Disposal
195(2)
6.4.3 Soil Vapor Extraction
197(4)
6.4.4 Enhanced Methods of Soil Vapor Extraction
201(1)
6.4.5 In Situ Air Sparging
202(8)
6.4.6 Enhanced Biodegradation
210(5)
6.4.7 In-well Aeration and Recirculation
215(1)
6.4.8 Reactive and Permeable Walls
216(1)
6.5 Costs
217(16)
6.5.1 Soil Excavation, Treatment and Disposal
217(3)
6.5.2 Soil Vapor Extraction
220(7)
6.5.3 Air Sparging Comparisons to other Technologies
227(6)
7 Mineral Ions and Natural Groundwater Contaminants
233(66)
7.1 Overview
233(3)
7.2 Secondary Drinking Water Standards
236(2)
7.3 Irrigation Water Quality Standards
238(9)
7.3.1 Salts
238(1)
7.3.2 Water Analysis Terminology
238(1)
7.3.3 Types of Salt Problems
239(2)
7.3.4 Salinity Hazard
241(1)
7.3.5 Sodium Hazard
242(1)
7.3.6 Trace Elements and Limits
242(5)
7.4 Water Treatment Membrane Technologies
247(19)
7.4.1 Overview
247(1)
7.4.2 Reverse Osmosis (RO)
248(7)
7.4.3 Nanofiltration
255(3)
7.4.4 Microfiltration
258(2)
7.4.5 Ultrafiltration
260(2)
7.4.6 Treatment Costs
262(3)
7.4.7 Secondary Wastes
265(1)
7.4.8 Selection Criteria
265(1)
7.5 Ion Exchange
266(13)
7.5.1 Technology Description
266(5)
7.5.2 Chelating Agents
271(1)
7.5.3 Batch and Column Exchange Systems
272(1)
7.5.4 Process Equipment
272(3)
7.5.5 Cost Data
275(4)
7.6 Crystallization
279(20)
7.6.1 Technology Description
279(7)
7.6.2 Forced-Circulation Crysallizers
286(2)
7.6.3 Draft-tube Crystallizers and Draft-tube-baffle Crystallizers
288(1)
7.6.4 Surface-Cooled Crystallizers
289(2)
7.6.5 Oslo Crystallizers
291(1)
7.6.6 Fluid-Bed Type Crystallizers
292(7)
8 Heavy Metals and Mixed Media Remediation Technologies for Contaminated Soils and Groundwater
299(80)
8.1 Nature of the Problem
299(1)
8.2 Toxic Metal Chemical Forms, Speciation and Properties
300(6)
8.3 Remedial Technology Strategies
306(47)
8.3.1 Isolation
306(1)
8.3.2 Capping
306(7)
8.3.3 Subsurface Barriers
313(2)
8.3.4 Immobilization
315(2)
8.3.5 Solidification/Stabilization
317(4)
8.3.6 Vitrification
321(2)
8.3.7 Toxicity and Mobility Reduction
323(8)
8.3.8 Wet Oxidation Process
331(2)
8.3.9 Advanced Oxidation Technologies
333(10)
8.3.10 Permeable Treatment Walls
343(1)
8.3.11 Biological Treatment
344(2)
8.3.12 Physical Separation
346(3)
8.3.13 Extraction
349(1)
8.3.14 Soil Washing
349(1)
8.3.15 Soil Screening
350(1)
8.3.16 Chemical Treatment
350(1)
8.3.17 Physical Treatment
351(1)
8.3.18 Pyrometallurgical Extraction
352(1)
8.3.19 In Situ Soil Flushing
352(1)
8.3.20 Electrokinetic Treatment
352(1)
8.4 Cost Data
353(26)
8.4.1 General Cost Information
353(3)
8.4.2 Site Capping
356(2)
8.4.3 In situ Solidification/Stabilization
358(3)
8.4.4 Ex Situ Solidification/Stabilization
361(4)
8.4.5 Soil Washing
365(2)
8.4.6 Slurry Walls
367(12)
Index 379
Nicholas P. Cheremisinoff is a chemical engineer with more than 40 years of industry, R&D and international business experience. He has worked extensively in the environmental management and pollution prevention fields, while also representing and consulting for private sector companies on new technologies for power generation, clean fuels and advanced water treatment technologies. He is a principal of No Pollution Enterprises. He has led and implemented various technical assignments in parts of Russia, eastern Ukraine, the Balkans, South Korea, in parts of the Middle East, Nigeria, and other regions of the world for such organizations as the U.S. Agency for International Development, the U.S. Trade & Development Agency, the World Bank Organization, and the private sector. Over his career he has served as a standard of care industry expert on a number of litigation matters. As a contributor to the industrial press, he has authored, co-authored or edited more than 160 technical reference books concerning chemical engineering technologies and industry practices aimed at sound environmental management, safe work practices and public protection from harmful chemicals. He is cited in U.S. Congressional records concerning emerging environmental legislations, and is a graduate of Clarkson University (formally Clarkson College of Technology) where all three of his degrees - BSc, MSc, and Ph.D. were conferred.