Muutke küpsiste eelistusi

E-raamat: Growth and Transport in Nanostructured Materials: Reactive Transport in PVD, CVD, and ALD

  • Formaat: EPUB+DRM
  • Sari: SpringerBriefs in Materials
  • Ilmumisaeg: 30-Nov-2016
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783319246727
  • Formaat - EPUB+DRM
  • Hind: 67,91 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: EPUB+DRM
  • Sari: SpringerBriefs in Materials
  • Ilmumisaeg: 30-Nov-2016
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783319246727

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book will address the application of gas phase thin film methods, including techniques such as evaporation, sputtering, CVD, and ALD to the synthesis of materials on nanostructured and high aspect-ratio high surface area materials. We have chosen to introduce these topics and the different application fields from a chronological perspective: we start with the early concepts of step coverage and later conformality in semiconductor manufacturing, and how later on the range of application branched out to include others such as energy storage, catalysis, and more broadly nanomaterials synthesis.The book will describe the ballistic and continuum descriptions of gas transport on nanostructured materials and then will move on to incorporate the impact of precursor-surface interaction. We will finally conclude approaching the subjects of feature shape evolution and the connection between nano and reactor scales and will briefly present different advanced algorithms that can be used

to effectively compute particle transport, in some cases borrowing from other disciplines such as radiative heat transfer. The book gathers in a single place information scattered over thirty years of scientific research, including the most recent results in the field of Atomic Layer Deposition. Besides a mathematical description of the fundamentals of thin film growth in nanostructured materials, it includes analytic expressions and plots that can be used to predict the growth using gas phase synthesis methods in a number of ideal approximations. The focus on the fundamental aspects over particular processes will broaden the appeal and the shelf lifetime of this book. The reader of this book will gain a thorough understanding on the coating of high surface area and nanostructured materials using gas phase thin film deposition methods, including the limitations of each technique. Those coming from the theoretical side will gain the knowledge required to model the growth process,

while those readers more interested in the process development will gain the theoretical understanding will be useful for process optimization.

Introduction.-Fundamentals of Gas Phase Transport on Nanostructured Materials.-Modeling Thin Film Growth on Nanostructured Materials.- Advanced Concepts.
1 Introduction
1(18)
1.1 Introduction
1(2)
1.2 Vapor Phase Thin Film Deposition Techniques
3(5)
1.2.1 Conformality of Vapor Phase Deposition Techniques
3(2)
1.2.2 Sticking Probability
5(1)
1.2.3 Knudsen Number
6(2)
1.3 Substrates and Scaffolds
8(4)
1.3.1 Deterministic Substrates
9(2)
1.3.2 Porous and Disordered Substrates
11(1)
1.4 Historical Overview
12(4)
1.4.1 Conformality in Semiconductor Manufacturing
12(2)
1.4.2 Chemical Vapor Infiltration
14(1)
1.4.3 Chemical Engineering and Heterogeneous Catalysis
15(1)
1.5 Summary
16(3)
References
16(3)
2 Physical and Chemical Vapor Deposition Techniques
19(20)
2.1 Physical Vapor Deposition Methods: Evaporation and Sputtering
19(4)
2.1.1 Evaporation
20(1)
2.1.2 Sputtering
21(2)
2.1.3 Approaches to Improve Step Coverage in PVD Methods
23(1)
2.2 Chemical Vapor Deposition
23(7)
2.2.1 Impact of Kinetics on the Conformality of CVD Processes
24(5)
2.2.2 Strategies to Improve Conformality in CVD
29(1)
2.3 Atomic Layer Deposition
30(5)
2.3.1 Introduction
30(1)
2.3.2 Models of ALD Surface Kinetics
31(3)
2.3.3 Application of ALD to High Surface Area Materials
34(1)
2.4 Summary
35(4)
References
36(3)
3 Fundamentals of Gas Phase Transport in Nanostructured Materials
39(30)
3.1 Ballistic Models
41(9)
3.1.1 Fundamental Equations
41(2)
3.1.2 Source Gas Distribution
43(1)
3.1.3 Particle Reemission Model
44(1)
3.1.4 View Factors
45(5)
3.2 Single Particle Approaches to Ballistic Transport
50(6)
3.2.1 Kinetic Monte Carlo Simulations
51(2)
3.2.2 Markov Chain Formulation
53(3)
3.3 Continuum Description: Diffusion-Based Models
56(11)
3.3.1 Knudsen Diffusion Coefficient
57(4)
3.3.2 Transitional Flow
61(1)
3.3.3 Diffusion in Micropores
62(2)
3.3.4 Diffusion in Polymers
64(1)
3.3.5 Transport in Presence of Reversible Adsorption/Desorption
65(2)
3.4 Summary
67(2)
References
67(2)
4 Thin Film Growth in Nanostructured Materials
69(32)
4.1 PVD and Early Line of Sight Approximations
69(3)
4.1.1 Directed Flow
70(1)
4.1.2 Isotropic Case
71(1)
4.2 Constant Sticking Probability
72(7)
4.2.1 Diffusion-Based Model
74(1)
4.2.2 Impact of Reaction Probability on Film Conformality
75(4)
4.3 Pressure-Dependent Kinetics
79(11)
4.3.1 Conformal Zone for Single-Source Precursors
81(4)
4.3.2 Superconformal Processes and Conformality Enhancement
85(5)
4.4 Self-limited Surface Kinetics: Atomic Layer Deposition
90(8)
4.4.1 Infiltration Kinetics
90(7)
4.4.2 Non-ideal ALD Processes
97(1)
4.5 Summary
98(3)
References
98(3)
5 Advanced Concepts
101(26)
5.1 Predicting Shape Evolution
101(19)
5.1.1 Lagrangian Methods
102(1)
5.1.2 Eulerian Methods
103(1)
5.1.3 String Methods
103(3)
5.1.4 Method of Characteristics
106(8)
5.1.5 Cell or Volume of Fluid Methods
114(1)
5.1.6 Level Set Methods
115(4)
5.1.7 Pore Constriction Models
119(1)
5.2 Bridging Feature and Reactor Scales
120(4)
5.2.1 Effective Reactivity Approach
121(1)
5.2.2 Mesoscale Model Approach
122(2)
5.2.3 Effective Reaction Probability of High Surface Area Materials
124(1)
5.3 Summary
124(3)
References
125(2)
Index 127