Muutke küpsiste eelistusi

E-raamat: Guide to Biomolecular Simulations

  • Formaat: PDF+DRM
  • Sari: Focus on Structural Biology 4
  • Ilmumisaeg: 26-Jun-2006
  • Kirjastus: Springer-Verlag New York Inc.
  • Keel: eng
  • ISBN-13: 9781402035876
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 108,06 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Sari: Focus on Structural Biology 4
  • Ilmumisaeg: 26-Jun-2006
  • Kirjastus: Springer-Verlag New York Inc.
  • Keel: eng
  • ISBN-13: 9781402035876
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Molecular dynamics simulations have become instrumental in replacing our view of proteins as relatively rigid structures with the realization that they were dynamic systems, whose internal motions play a functional role. Over the years, such simulations have become a central part of biophysics. Applications of molecular dynamics in biophysics range over many areas. They are used in the structure determination of macromolecules with x-ray and NMR data, the modelling of unknown structures from their sequence, the study of enzyme mechanisms, the estimation of ligand-binding free energies, the evaluation of the role of conformational change in protein function, and drug design for targets of known structures.



The widespread application of molecular dynamics and related methodologies suggests that it would be useful to have available an introductory self-contained course by which students with a relatively limited background in chemistry, biology and computer literacy, can learn the fundamentals of the field. This Guide to Biomolecular Simulations tries to fill this need. The Guide consists of six chapters which provide the fundamentals of the field and six chapters which introduce the reader to more specialized but important applications of the methodology.

Arvustused

From the reviews:









"The Guide to Biomolecular Simulations intends to provide students and nonexperts with an introductory, self-contained course about the application of molecular dynamics and related methodologies. The book emerged from a biophysics course held at Harvard in the 1990s and is therefore suited for standalone self-study as well as for classroom use . And finally, a reader who successfully worked through the book obtained significant experience in using CHARMM, one of the most widely used molecular dynamics packages in biomolecular simulations." (Anselm H. C. Horn, Journal of Chemical Information and Modeling, Vol. 46 (6), 2006)

Preface vii
Introduction: Note to the Student 1(2)
Introduction: Note to the Instructor 3(1)
Introduction: UNIX 4(6)
Introduction: CHARMM Primer 10(8)
Introduction: CHARMM Template Files 18(1)
Lab 1: Introduction to Molecular Visualization 19(16)
Lab 2: Energy and Minimization 35(16)
Lab 3: Minimization and Analysis 51(14)
Lab 4: Conformational Analysis 65(10)
Lab 5: Basic Molecular Dynamics in Vacuum and in Solution 75(26)
Lab 6: Molecular Dynamics and Analysis 101(30)
Lab 7: Ligand Dynamics in Myoglobin 131(24)
Lab 8: Normal Mode Analysis 155(18)
Lab 9: Free Energy Calculations 173(20)
Lab 10: Minimum Energy Paths 193(12)
Lab 11: Multiple Copy Simultaneous Search 205(8)
Lab 12: Hemoglobin Cooperativity: the T-R Transition 213