Muutke küpsiste eelistusi

E-raamat: Guide to Feedback Theory

(TalkingHeads Wireless, Inc.)
  • Formaat: PDF+DRM
  • Ilmumisaeg: 22-Apr-2021
  • Kirjastus: Cambridge University Press
  • Keel: eng
  • ISBN-13: 9781009038775
  • Formaat - PDF+DRM
  • Hind: 27,16 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Ilmumisaeg: 22-Apr-2021
  • Kirjastus: Cambridge University Press
  • Keel: eng
  • ISBN-13: 9781009038775

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Understand feedback with this accessible, concise, and informal guide. Perfect for students, especially those who need a refresher, as well as practising engineers.

Do you need to understand feedback? Perhaps you're a little rusty on theory basics? Dig in to this self-contained guide for an accessible and concise explanation of the fundamentals. Distills the relevant essence of linear system theory, calculus, differential equations, linear algebra, basic physics, numerical methods, and complex analysis, and links them back to an explanation of feedback theory. Provides a tight synthesis of analytical and conceptual understanding. Maintains a focus on common use cases. Whether you are a struggling undergraduate, a doctoral student preparing for your qualifying exams, or an industry practitioner, this easy-to-understand book invites you to relax, enjoy the material, and follow your curiosity.

Arvustused

'Feedback theory is an intrinsically mathematical discipline in which one can feel either submerged by formulae or driven to use blind computer simulations that hide insight. Dawson's approach is to extract visceral meaning out of this tangle, arguing that a deep understanding of dynamic stability criteria can free the designer from 'equational overload' and lead to incisive selection of the right mathematical tool for the job at hand.' Stephen D. Senturia, Massachusetts Institute of Technology 'Feedback is perhaps the most foundational concept for electronics and control systems in general, but it is often covered for specific circuits for the former, and in terms of theoretical concepts for the latter. This book provides us with a unique perspective of how feedback theory in general relates to practical systems and electronics applications.' Larry Pileggi, Carnegie Mellon University 'Recommended.' D. Z. Spicer, Choice Magazine

Muu info

Understand feedback with this accessible, concise, and informal guide.
Preface xi
Acknowledgments xiii
1 Linear Systems: What You Missed the First Time
1(51)
1.1 Differential Equations Are a Natural Way to Express Time Evolution
1(11)
1.1.1 A First-Order System
1(7)
1.1.2 Higher-Order Systems
8(4)
1.1.3 For Those of You Bothered by the Numerical Fitting in Section 1.1.1
12(1)
1.2 Convenient Properties of Linear Differential Equations
12(10)
1.2.1 Superposition!
13(2)
1.2.2 The Special Place of Exponentials
15(4)
1.2.3 But Why Complex Exponentials?
19(3)
1.3 Frequency Domain Methods: A Beautiful Strategy
22(7)
1.3.1 Fourier Series Representation of Periodic Signals
23(3)
1.3.2 The Fourier Transform and the Meaning of Integrals
26(2)
1.3.3 The Strategy
28(1)
1.4 Impulses in Linear, Time-Invariant Systems
29(6)
1.4.1 Why Impulses?
29(2)
1.4.2 The Fourier Transform and the Impulse Response
31(2)
1.4.3 The Fourier Transform of Differential Equations
33(2)
1.5 The Unilateral Laplace Transform
35(12)
1.5.1 Dynamic Interpretation of Poles
36(4)
1.5.2 The Geometric View of Poles and Zeros
40(4)
1.5.3 Initial and Final Value Theorems
44(2)
1.5.4 Inverting the Laplace Transform
46(1)
1.6 Convolution and the Special Place of Exponentials
47(1)
1.7 Discrete-Time Formalism: Same Ideas, Different Notation
47(3)
1.7.1 Difference Equations Are a Really Natural Expression of Time Evolution
47(2)
1.7.2 The Fourier Transform in Discrete Time
49(1)
1.7.3 The Z-Transform, the Impulse Response, and Convolution in Discrete Time
50(1)
1.8
Chapter Summary
50(2)
2 The Basics of Feedback
52(64)
2.1 Filling a Glass with Water
52(3)
2.2 Open-versus Closed-Loop Control in Block Diagrams
55(3)
2.3 Anatomy of a Feedback Loop
58(12)
2.3.1 Block Diagrams
58(3)
2.3.2 Sensors and Actuators
61(5)
2.3.3 Loop Transmission, Negative Feedback, and Stable Equilibria
66(3)
2.3.4 Black's Formula
69(1)
2.4 Delay Complicates Everything
70(7)
2.4.1 Phase Response as a Frequency-Dependent Delay
71(3)
2.4.2 The Fundamental Oscillation Condition
74(1)
2.4.3 Poles in the Right-Half Plane Are Bad
75(2)
2.5 Root Locus Techniques
77(28)
2.5.1 The Problem We're Trying to Solve
79(3)
2.5.2 The Amazing Things You Can Do with Two Simple Conditions
82(7)
2.5.3 Root Locus as a Design Tool
89(10)
2.5.4 Root Locus in Discrete Time
99(3)
2.5.5 A Useful Limit of DT
102(3)
2.6 Common Control Strategies
105(8)
2.6.1 Gain Reduction
105(2)
2.6.2 Dominant Poles and Integrators
107(1)
2.6.3 Lag and Lead Compensators
108(3)
2.6.4 PID Control
111(2)
2.7 Answers to Sample Problems
113(3)
3 The Nyquist Stability Criterion
116(31)
3.1 An Authoritative Test of Stability
116(1)
3.1.1 True Delay and Root Locus
117(1)
3.2 A Note on Conformal Mapping
117(2)
3.3 Cauchy's Principle of the Argument
119(3)
3.4 And Now the Nyquist Stability Criterion
122(4)
3.5 Bode Plots Help with Nyquist
126(5)
3.6 Nyquist Plot Examples
131(6)
3.7 Phase Margin: Why You Never Really Learned Nyquist
137(9)
3.7.1 The Stability Margin Concept
138(1)
3.7.2 Phase Margin Definition
139(6)
3.7.3 Phase Margin, Overshoot, Ringing, and Magnitude Peaking
145(1)
3.8 Nyquist and Bode Techniques for DT Systems
146(1)
4 Some Common Loose Ends
147(25)
4.1 "But in Control Theory, They Use Lots of Linear Algebra "
147(3)
4.2 The Problem of "Sinusoids Running Around Loops"
150(7)
4.3 Discrete-Time Control of Continuous-Time Systems
157(15)
4.3.1 DT Processing of CT Signals
158(5)
4.3.2 Don't Kid Around: Just Oversample
163(2)
4.3.3 Relationship between z and s in Mixed-Signal Control
165(4)
4.3.4 DT Compensators for CT Systems
169(1)
4.3.5 The Other Useful Extreme: Slow Sampling
169(1)
4.3.6 A Note on the Bias toward CT Methods
169(1)
4.3.7 Sometimes, Real-Time Computer Control Is Hopeless
170(2)
5 Feedback in the Real World
172(9)
5.1 Finding Loop Transmissions
172(3)
5.1.1 Is the Sign Right? A Useful Check
174(1)
5.2 A Common Application: Howling Speakers and Microphones
175(6)
6 Conclusion and Further Reading
181(2)
Index 183
Joel L. Dawson is an entrepreneur and former MIT professor. He received a 2009 PECASE Award, the highest honor bestowed by the U.S. government on young scientists and engineers. His start up Eta Devices was a Technology Pioneer of the 2015 World Economic Forum and acquired by Nokia in 2016. His latest start up is TalkingHeads Wireless, Inc.