Muutke küpsiste eelistusi

E-raamat: Guide to Process Based Modeling of Lakes and Coastal Seas

  • Formaat: PDF+DRM
  • Sari: Springer-Praxis Books
  • Ilmumisaeg: 18-May-2011
  • Kirjastus: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Keel: eng
  • ISBN-13: 9783642177286
  • Formaat - PDF+DRM
  • Hind: 166,72 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Sari: Springer-Praxis Books
  • Ilmumisaeg: 18-May-2011
  • Kirjastus: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Keel: eng
  • ISBN-13: 9783642177286

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Mounting concern about the influence of humans on climate and environmental conditions has increased the need for multi-disciplinary modeling efforts, including systems such as oceans, costal seas, lakes, land surfaces, ice, rivers and atmosphere.

This unique book will stimulate students and researchers to develop

their modeling skills and make model codes and data transparent

to other research groups. The book uses the general equation solver

PROBE to introduce process oriented numerical modeling and to

build understanding of the subject step by step. PROBE is a general

equation solver for one-dimensional transient, or two-dimensional

steady, boundary layers. By the construction of nets of sub-basins the

book illustrates how the process based modeling can be extended,

complementing three-dimensional modeling. The equation solver has

been used in many applications, particularly in Sweden and Finland

with their numerous lakes, archipelago seas, fjords, and coastal zones.

It has also been used for process studies in the Arctic and in the

Mediterranean Sea and the approach is general for applications in many

other environmental applications.... more on http://

springer.com/978-3-642-17727-9.



Mounting concern over humanity's influence on climate and the environment has sharpened the need for multi-disciplinary modelling efforts. Tackling the issue from a fresh perspective, this book introduces a process-oriented approach to aquatic modelling.

Arvustused

From the reviews: "The Guide to process based modeling of lakes and coastal seas uses an easily accessible and well-tested model to guide aspiring modelers and students into the process of modeling, making the process of numerical simulations easier and more transparent. It is a welcome new resource for those interested in modeling in the fields of physical oceanography and aquatic ecology. ... book should be also accessible to students with basic knowledge of fluid dynamics, which makes it suitable for teaching in graduate or upper-level undergraduate courses." (Sergei Katsev, Journal of Paleolimnology, Vol. 49, 2013)

Preface ix
Foreword by Urban Svensson xi
Foreword by Jorgen Sahlberg xiii
Acknowledgments xv
List of figures
xvii
List of tables
xxi
List of abbreviations and acronyms
xxiii
1 Introduction
1(6)
2 Background physics and biogeochemistry
7(30)
2.1 Conservation principles and governing equations
7(1)
2.2 Physical aspects
8(1)
2.3 Simplifications
9(5)
2.4 Water masses and water pools
14(3)
2.5 Strait flows
17(2)
2.6 Turbulence
19(1)
2.7 Water and salt balances
20(1)
2.8 Heat balance
21(2)
2.9 Nutrient balances and primary production
23(3)
2.10 Acid-base (pH) balance
26(3)
2.11 Some comments related to climate change
29(8)
3 Physical aspects
37(34)
3.1 Introduction
37(1)
3.2 Turbulence, numerical methods, and programs
38(3)
3.3 Modeling the Ekman ocean boundary layer
41(5)
3.3.1 Introduction
41(1)
3.3.2 Mathematical formulation
41(3)
3.3.3 Details of calculations
44(1)
3.3.4 Results
44(2)
3.3.5 Discussion
46(1)
3.4 Modeling shallow and deep lakes
46(4)
3.4.1 Introduction
46(1)
3.4.2 Mathematical formulation
47(1)
3.4.3 Details of calculations
48(1)
3.4.4 Results
48(2)
3.4.5 Discussion
50(1)
3.5 Modeling the Ekman ocean boundary layer influenced by temperature and salinity
50(7)
3.5.1 Introduction
50(1)
3.5.2 Mathematical formulation
50(3)
3.5.3 Details of calculations
53(1)
3.5.4 Results
53(3)
3.5.5 Discussion
56(1)
3.6 Modeling an ice-covered ocean boundary layer
57(5)
3.6.1 Introduction
57(1)
3.6.2 Mathematical formulation
58(2)
3.6.3 Details of calculations
60(1)
3.6.4 Results
60(1)
3.6.5 Discussion
61(1)
3.7 Modeling turbulence in the upper layers of the ocean
62(5)
3.7.1 Introduction
62(1)
3.7.2 Mathematical formulation
62(2)
3.7.3 Details of calculations
64(1)
3.7.4 Results
64(1)
3.7.5 Discussion
65(2)
3.8 Modeling tidal dynamics in the ocean
67(4)
3.8.1 Introduction
67(1)
3.8.2 Mathematical formulation
67(1)
3.8.3 Details of calculations
68(1)
3.8.4 Results
69(1)
3.8.5 Discussion
69(2)
4 Biogeochemical aspects
71(28)
4.1 Introduction
71(1)
4.2 Basic equations, stoichiometrics, and unit transformations
72(3)
4.3 Modeling the dynamics of oxygen
75(3)
4.3.1 Introduction
75(1)
4.3.2 Mathematical formulation
75(1)
4.3.3 Details of calculations
76(1)
4.3.4 Results
76(2)
4.3.5 Discussion
78(1)
4.4 Modeling plankton growth/decay
78(4)
4.4.1 Introduction
78(1)
4.4.2 Mathematical formulation
78(2)
4.4.3 Details of calculations
80(1)
4.4.4 Results
80(1)
4.4.5 Discussion
81(1)
4.5 Modeling the dynamics of nutrients
82(4)
4.5.1 Introduction
82(1)
4.5.2 Mathematical formulation
83(1)
4.5.3 Details of calculations
84(1)
4.5.4 Results
84(2)
4.5.5 Discussion
86(1)
4.6 Modeling dissolved inorganic carbon
86(7)
4.6.1 Introduction
86(3)
4.6.2 Mathematical formulation
89(2)
4.6.3 Details of calculations
91(1)
4.6.4 Results
91(1)
4.6.5 Discussion
92(1)
4.7 Modeling the dynamics of plankton, oxygen, and carbon
93(6)
4.7.1 Introduction
93(1)
4.7.2 Mathematical formulation
93(2)
4.7.3 Details of calculations
95(1)
4.7.4 Results
95(2)
4.7.5 Discussion
97(2)
5 Construction of nets of sub-basins
99(24)
5.1 Modeling two-coupled sub-basins
99(4)
5.1.1 Introduction
99(1)
5.1.2 Mathematical formulation
99(2)
5.1.3 Details of calculations
101(1)
5.1.4 Results
101(2)
5.1.5 Discussion
103(1)
5.2 The PROBE-Baltic model system: Physical aspects
103(9)
5.2.1 Introduction
103(3)
5.2.2 Mathematical formulation
106(2)
5.2.3 Details of calculations
108(1)
5.2.4 Results
109(2)
5.2.5 Discussion
111(1)
5.3 The PROBE-Baltic model system: Oxygen aspects
112(4)
5.3.1 Introduction
112(1)
5.3.2 Mathematical formulation
113(1)
5.3.3 Details of calculations
113(1)
5.3.4 Results
114(1)
5.3.5 Discussion
114(2)
5.4 The PROBE-Baltic model system: Biogeochemical aspects
116(7)
5.4.1 Introduction
116(1)
5.4.2 Mathematical formulation
117(1)
5.4.3 Details of calculations
117(1)
5.4.4 Results
118(3)
5.4.5 Discussion
121(2)
6 Solutions manual
123(42)
6.1 Solutions to exercises in
Chapter 2
123(13)
6.2 Solutions to exercises in
Chapter 3
136(9)
6.3 Solutions to exercises in
Chapter 4
145(7)
6.4 Solutions to exercises in
Chapter 5
152(13)
7 Summary and conclusions
165(2)
APPENDICES
A Introduction to Fortran
167(4)
B Nomenclature
171(10)
C Data and programs needed for the exercises
181(2)
D The Probe Manual
183(58)
D.1 Introduction
183(4)
D.2 Brief description of basic equations and techniques
187(1)
D.3 Description of the code
188(5)
D.4 How to use Probe
193(15)
D.5 Advice on effective use
208(2)
D.6 Concluding remarks
210(1)
D.7 Nomenclature
210(4)
D.8 Mathematical formulation
214(6)
D.9 Finite difference equiations for the one-dimensional transient option
220(4)
D.10 Finite difference equations for two-dimensional steady-state options (from Nordblom, 1997)
224(8)
D.11 Acknowledgments
232(1)
D.l2 References
233(8)
E Reconstructions of past aquatic conditions
241(6)
References 247(8)
Index 255