Muutke küpsiste eelistusi

E-raamat: Hamiltonicity of Random Subgraphs of the Hypercube

  • Formaat - PDF+DRM
  • Hind: 112,71 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

"We study Hamiltonicity in random subgraphs of the hypercube Qn. Our first main theorem is an optimal hitting time result. Consider the random process which includes the edges of Qn according to a uniformly chosen random ordering. Then, with high probability, as soon as the graph produced by this process has minimum degree 2k, it contains k edge-disjoint Hamilton cycles, for any fixed k N. Secondly, we obtain a perturbation result: if H Qn satisfies (H) n with 0 fixed and we consider a random binomial subgraph Qnp of Qn with p (0, 1] fixed, then with high probability HQnp contains k edge-disjoint Hamilton cycles, for any fixed k N. In particular, both results resolve a long standing conjecture, posed e.g. by Bollobas, that the threshold probability for Hamiltonicity in the random binomial subgraph of the hypercube equals 1/2. Our techniques also show that, with high probability, for all fixed p (0, 1] the graph Qnp contains an almost spanning cycle. Our methods involve branching processes, the Rodl nibble, and absorption"-- Provided by publisher.
Chapters
1. Introduction
2. Outline of the main proofs
3. Notation
4. Probabilistic tools
5. Auxiliary results
6. Tiling random subgraphs of the hypercube with small cubes
7. Near-spanning trees in random subgraphs of the hypercube
8. Hamilton cycles in randomly perturbed dense subgraphs of the hypercube
9. Hitting time result
Padraig Condon, University of Birmingham, United Kingdom, Alberto Espuny Diaz, University of Birmingham, United Kingdom, Antonio Girao, University of Birmingham, United Kingdom, Daniela Kuhn, University of Birmingham, United Kingdom, and Deryk Osthus, University of Birmingham, United Kingdom