Muutke küpsiste eelistusi

E-raamat: Handbook Of Accelerator Physics And Engineering (Third Edition)

Edited by (Slac National Accelerator Lab, Usa), Edited by (Cern, Switzerland), Edited by (Desy, Germany), Edited by (Cornell Univ, Usa)
  • Formaat: 960 pages
  • Ilmumisaeg: 02-Feb-2023
  • Kirjastus: World Scientific Publishing Co Pte Ltd
  • Keel: eng
  • ISBN-13: 9789811269189
Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 321,75 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 960 pages
  • Ilmumisaeg: 02-Feb-2023
  • Kirjastus: World Scientific Publishing Co Pte Ltd
  • Keel: eng
  • ISBN-13: 9789811269189
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Edited by internationally recognized authorities in the field, this expanded and updated new edition of the bestselling Handbook, containing many new articles, is aimed at the design and operation of modern particle accelerators. It is intended as a vade mecum for professional engineers and physicists engaged in these subjects. With a collection of more than 2000 equations, 300 illustrations and 500 graphs and tables, here one will find, in addition to common formulae of previous compilations, hard to find, specialized formulae, recipes and material data pooled from the lifetime experience of many of the world's most able practioners of the art and science of accelerators.The seven chapters include both theoretical and practical matters as well as an extensive glossary of accelerator types. Chapters on beam dynamics and electromagnetic and nuclear interactions deal with linear and nonlinear single particle and collective effects including spin motion, beam-environment, beam-beam, beam-electron, beam-ion and intrabeam interactions. The impedance concept and related calculations are dealt with at length as are the instabilities due to the various interactions mentioned. A chapter on operational considerations including discussions on the assessment and correction of orbit and optics errors, realtime feedbacks, generation of short photon pulses, bunch compression, phase-space exchange, tuning of normal and superconducting linacs, energy recovery linacs, free electron lasers, cryogenic vacuum systems, steady state microbuching, cooling, space-charge compensation, brightness of light sources, collider luminosity optimization and collision schemes, machine learning, multiple frequency rf systems, FEL seeding, ultrafast electron diffraction, and Gamma Factory. Chapters on mechanical and electrical considerations present material data and important aspects of component design including heat transfer and refrigeration. Hardware systems for particle sources, feedback systems, confinement, including undulators, and acceleration (both normal and superconducting) receive detailed treatment in a sub-systems chapter, beam measurement and apparatus being treated therein as well.A detailed name and subject index is provided together with reliable references to the literature where the most detailed information available on all subjects treated can be found.
Preface v
Acknowledgments vi
1 Introduction
1(82)
1.1 How to Use This Book
1(1)
1.2 Nomenclature
1(2)
1.3 Fundamental Constants
3(1)
1.4 Units and Conversions
4(1)
1.4.1 Units
4(1)
A.W. Chao
1.4.2 Conversions
4(1)
M. Tigner
1.5 Fundamental Formulae
5(3)
A.W. Chao
1.5.1 Special Functions
5(1)
1.5.2 Curvilinear Coordinate Systems
6(1)
1.5.3 Electromagnetism
6(1)
1.5.4 Kinematical Relations
7(1)
1.5.5 Vector Analysis
8(1)
1.5.6 Relativity
8(1)
1.6 Glossary of Accelerator Types
8(70)
1.6.1 Antiproton Sources
8(3)
C. Carli
1.6.2 Betatron
11(1)
M. Tigner
1.6.3 Collider
12(3)
W. Chou
1.6.4 Cyclotron
15(3)
M. Seidel
1.6.5 Electrostatic Accelerator
18(2)
M.L. Sundquist
1.6.6 Fixed-Field Alternating-gradient Accelerators
20(5)
G.H. Hoffstaetter
M.K. Craddock
1.6.7 Heavy Ion Linacs
25(2)
P.N. Ostroumov
J. Wei
1.6.8 High Voltage Electrodynamic Accelerators
27(2)
M.R. Cleland
1.6.9 Induction Linac
29(2)
R. Bangerter
1.6.10 Industrial Accelerators
31(4)
R. Hamm
1.6.11 Laser, Wakefield and Plasma Accelerators
35(4)
J. Rosenzweig
1.6.12 Linear Accelerators for Electrons
39(3)
G.A. Loew
H. Weise
1.6.13 Linear Accelerators for Protons
42(3)
S. Henderson
A. Aleksandrov
1.6.14 Medical Applications of Accelerators
45(5)
C. Hoehr
J. Alonso
1.6.15 Muon Collider
50(3)
N. Pastrone
1.6.16 Muon MDM and proton EDM tests
53(4)
L. Gibbons
R. Talman
1.6.17 Neutron Sources
57(3)
S. Peggs
M. Lindroos
1.6.18 Pulsed High Voltage Devices
60(2)
J.A. Nation
D.A. Hammer
1.6.19 Radio Frequency Quadrupole
62(3)
E. Pozdeyev
1.6.20 Rhodotron
65(2)
Y. Jongen
M. Abs
J. Brison
1.6.21 Storage Ring
67(2)
W. Fischer
1.6.22 Synchrotron Radiation Facility
69(6)
Z.T. Zhao
1.6.23 Synchrotron
75(3)
C. Zhang
1.7 Accelerator Computer Codes
78(5)
R.D. Ryne
2 Beam Dynamics
83(172)
2.1 Phase Space
83(6)
2.1.1 Linear Betatron Motion
83(1)
D.A. Edwards
M.J. Syphers
2.1.2 Longitudinal Motion
84(1)
D.A. Edwards
M.J. Syphers
2.1.3 Hamiltonian
85(1)
K. Symon
2.1.3.1 General case
85(2)
2.1.3.2 Transverse motion
87(1)
2.1.3.3 Longitudinal motion
88(1)
2.1.3.4 Synchrobetatron coupling
88(1)
2.2 Optics and Lattice
89(24)
2.2.1 Single Element Optics
89(4)
K. Brown
2.2.2 3D Multipole Expansion, Calculation of Transfer Maps from Field Data, Fringe Fields
93(3)
M. Venturini
A. Dragt
2.2.3 Lattices for Collider Storage Rings
96(3)
Y. Cai
2.2.4 Lattices for Low-Emittance Light Sources
99(5)
C. Steier
2.2.5 Betatron Motion with Coupling of Two Degrees of Freedom
104(5)
V. Lebedev
A. Burov
2.2.6 Orbital Eigenanalysis for Electron Storage Rings
109(1)
J. Ellison
K. Heinemann
H. Mais
2.2.6.1 Basic problem
109(2)
2.2.6.2 Beam distribution in BF6
111(1)
2.2.6.3 Appendix on averaging
112(1)
2.3 Nonlinear Dynamics
113(40)
2.3.1 Hamiltonian perturbative theory of betatron motion
113(6)
R. Bartolini
2.3.2 Synchrobetatron Resonances
119(5)
A. Bogomyagkov
2.3.3 Taylor Map, Henon Map, Standard Map
124(2)
A. Dragt
2.3.4 Lie Algebraic Methods
126(1)
A. Dragt
2.3.4.1 Lie algebra
126(2)
2.3.4.2 Computation of maps
128(2)
2.3.4.3 Applications of maps
130(3)
2.3.5 Differential Algebraic Techniques
133(4)
M. Berz
2.3.6 Symplectic Integration Methods
137(1)
H. Yoshida
2.3.6.1 Methods of realization
138(1)
2.3.6.2 Symplectic method vs. nonsymplectic method
139(1)
2.3.7 Dynamic Aperture
140(4)
Y. Jiao
Y. Li
A. Wolski
2.3.8 Decoherence
144(1)
M.A. Furman
2.3.9 Momentum Compaction and Phase Slip Factor
145(2)
K. Y. Ng
2.3.10 Nonlinear Dynamics Experiments
147(3)
W. Fischer
2.3.11 Integrable Optics Test Accelerator
150(2)
S. Nagaitsev
A. Valishev
2.3.12 Echo Effects
152(1)
G.V. Stupakov
2.4 Collective Effects
153(54)
2.4.1 Collective Longitudinal Effects in High Energy Electron Linacs
153(1)
K. Yokoya
K. Thompson
2.4.1.1 Single bunch longitudinal dynamics
154(1)
2.4.1.2 Multibunch longitudinal dynamics
154(1)
2.4.2 Collective Transverse Effects in High Energy Electron Linacs
155(1)
K. Kubo
A. Latina
2.4.2.1 Single bunch transverse dynamics
155(1)
2.4.2.2 Multibunch transverse dynamics
156(1)
2.4.2.3 Effects of structure misalignment
157(1)
2.4.3 Collective Effects in Energy Recovery Linacs
158(2)
G. Hoffstaetter
2.4.4 Beam Loading
160(1)
D. Boussard
2.4.4.1 Single-bunch passage in a cavity
160(1)
2.4.4.2 Cavity equivalent circuit
160(1)
2.4.4.3 Transmission of small modulations (AM and PM) through a cavity with beam loading
161(1)
2.4.4.4 Periodic beam loading at multiples of ƒ0
162(1)
2.4.4.5 Rf power needed for transient beam-loading correction
163(1)
2.4.4.6 Traveling-wave cavities
163(1)
2.4.5 Space-Charge Dominated Beams in Guns and Transport Lines
164(4)
M. Ferrario
2.4.6 Space Charge Effects in Circular Accelerators
168(1)
2.4.6.1 Direct space charge effects
168(1)
B. Latter
2.4.6.2 Betatron frequency shifts
169(2)
B. Zotter
2.4.6.3 Space charge nonlinear resonances
171(3)
G. Franchetti
2.4.7 Beam Dynamics in Proton Linacs
174(4)
S. Henderson
A. Aleksandrov
2.4.8 Vlasov and Fokker-Planck Equations
178(1)
B. Zotter
2.4.9 Potential Well Effect
179(2)
B. Zotter
2.4.10 Single-Bunch Instabilities in Circular Accelerators
181(5)
B. Zotter
E. Metral
2.4.11 Sacherer Formulae
186(3)
B. Zotter
2.4.12 Landau Damping
189(3)
K. Y. Ng
2.4.13 Intrabeam scattering and Stripping, Touschek effect
192(4)
V. Lebedev
S. Nagaitsev
2.4.14 Ion Trapping, Beam-Ion Instabilities, and Dust
196(1)
F. Zimmermann
2.4.14.1 Ion trapping
196(1)
2.4.14.2 Dust particles
197(2)
2.4.14.3 Single-pass ion effects in storage rings and linacs
199(1)
2.4.15 Electron-Cloud Effect
200(5)
G. Iadarola
2.4.16 Coherent Synchrotron Radiation Instability
205(2)
G. Stupakov
2.5 Beam-Beam Effects
207(15)
2.5.1 Beam-Beam Interactions in Circular Colliders
207(5)
K. Ohmi
2.5.2 Crab Waist Collision Scheme
212(2)
M. Zobov
2.5.3 Beam-Beam Effects in Linear Colliders
214(1)
P. Chen
D. Schulte
2.5.3.1 Disruption
214(1)
2.5.3.2 Beamstrahlung
215(2)
2.5.3.3 Background and spent beam
217(1)
2.5.4 Parasitic Beam-Beam Effects and Separation Schemes
218(1)
J.M. Jowett
2.5.4.1 Separation schemes
218(2)
2.5.4.2 Long-range beam-beam effects
220(2)
2.6 Polarization
222(16)
2.6.1 Thomas-BMT Equation
222(1)
T. Roser
2.6.2 Spinor Algebra
222(1)
T. Roser
2.6.3 Spin Rotators and Siberian Snakes
223(1)
T. Roser
2.6.4 Depolarizing Resonances and Spin Flippers
224(1)
T. Roser
2.6.5 Polarized Hadron Beams and Siberian Snakes
225(4)
A.D. Krisch
M.A. Leonova
V.S. Morozov
2.6.6 Radiative Polarization in Electron Storage Rings
229(3)
D.P. Barber
G. Ripken
2.6.7 Computing Algorithms for e-/e+ Polarization in Storage Rings
232(3)
D.P. Barber
G. Ripken
2.6.8 Spin Matching in e-/e+ Rings
235(2)
D.P. Barber
G. Ripken
2.6.9 Stern-Gerlach Force
237(1)
K. Yokoya
2.7 Beam Cooling
238(17)
2.7.1 Stochastic Cooling
238(1)
M. Blaskiewicz
2.7.1.1 Cooling rates
238(2)
2.7.1.2 Hardware
240(1)
2.7.1.3 Optical Stochastic Cooling
240(1)
2.7.2 Electron Cooling
241(4)
S. Nagaitsev
2.7.3 Coherent Electron Cooling
245(2)
G. Stupakov
2.7.4 Ionization Cooling
247(3)
D. Neuffer
2.7.5 Crystalline Beam
250(5)
J. Wei
3 Electromagnetic and Nuclear Interactions
255(112)
3.1 Synchrotron Radiation
255(35)
3.1.1 Radiation of a Point Charge
255(1)
H. Wiedemann
3.1.2 Diffraction Limit and Brightness
256(1)
H. Wiedemann
3.1.3 Coherent Radiation
257(1)
H. Wiedemann
S. Krinsky
3.1.4 Bending Magnet Radiation
258(3)
H. Wiedemann
3.1.5 Synchrotron Radiation in Storage Rings
261(1)
H. Wiedemann
3.1.5.1 Radiation integrals
261(1)
3.1.5.2 Radiation damping
261(1)
3.1.5.3 Quantum excitation
262(1)
3.1.5.4 Equilibrium beam emittances
262(1)
3.1.5.5 Damping wigglers
263(1)
3.1.5.6 Quantum lifetimes
263(1)
3.1.6 Undulator and Wiggler Radiation
264(2)
H. Wiedemann
3.1.7 Polarization of Synchrotron Radiation
266(1)
H. Wiedemann
3.1.8 Transition and Diffraction Radiation
267(1)
C. Thongbai
3.1.9 Steady State Microbunching Sources
268(2)
A. W. Chao
3.1.10 Free-Electron Laser
270(6)
Z. Huang
P. Schmuser
3.1.11 Advanced FEL schemes
276(3)
Z. Huang
3.1.12 Ultrashort X-ray Pulse Generation
279(1)
A. Zholents
3.1.13 Ultrafast Electron Diffraction and Microscopy
280(2)
D. Xiang
3.1.14 Compton/Thomson Sources
282(1)
G.A. Krafft
3.1.14.1 Luminosity description
282(1)
3.1.14.2 Nonlinear scattering
283(1)
3.1.15 Gamma Factory
283(3)
M.W. Krasny
3.1.16 Beam Solid-Target Photon Physics
286(4)
K. Ispiryan
3.2 Impedances and Wake Functions
290(26)
3.2.1 Definitions and Properties of Impedances and Wake Functions
290(2)
T. Suzuki
K.Y. Ng
K. Bane
3.2.2 Impedance Calculation, Frequency Domain
292(5)
R.L. Gluckstern
S.S. Kurennoy
3.2.3 Impedance Calculation. Time Domain
297(4)
E. Gjonaj
T. Weiland
3.2.4 Explicit Expressions of Impedances and Wake Functions
301(10)
K. Y. Ng
K. Bane
3.2.5 Effective impedance
311(2)
T. Suzuki
3.2.6 Parasitic Loss
313(2)
P. Wilson
B. Zotter
Y.-H. Chin
K. Bane
3.2.7 Trapped Modes
315(1)
S.S. Kurennoy
3.3 Particle-Matter Interaction
316(51)
3.3.1 Basic Formulae
316(2)
M. Tigner
A.W. Chao
3.3.2 Beam and Luminosity Lifetime
318(1)
3.3.2.1 Protons
318(4)
N. V. Mokhov
V.I. Balbekov
F. Antoniou
Y. Papaphilippou
3.3.2.2 Electrons
322(2)
M.S. Zisman
K. Oide
F. Zimmermann
3.3.2.3 Heavy ions
324(1)
J.M. Jowett
M. Schaumann
3.3.3 Bhabha Scattering (e+e- → e+e-)
325(2)
J.E. Spencer
3.3.4 Compton Scattering (e± → e±γ)
327(2)
J.E. Spencer
3.3.5 Limit of Focusing of Electron Beam due to Synchrotron Radiation
329(1)
K. Oide
3.3.6 Thermal Outgassing and Beam Induced Desorption
330(6)
V. Baglin
E. Mahner
O. Grobner
3.3.7 Photoemission and Secondary Emission
336(1)
V. Baglin
3.3.7.1 Photoemission
336(1)
3.3.7.2 Secondary Emission
337(1)
3.3.8 Ionization Processes
338(1)
F. Zimmermann
3.3.9 Beam Induced Detector Backgrounds and Irradiation in e+e- Colliders
339(1)
S.D. Henderson
M. Sullivan
3.3.9.1 Sources of detector backgrounds
339(4)
3.3.9.2 Detector and IR radiation tolerance and budget
343(1)
3.3.9.3 Detector background shielding
343(1)
3.3.9.4 Detector background and radiation estimation
344(2)
3.3.10 Particle Interactions and Beam-Induced Backgrounds and Radiation
346(7)
N.V. Mokhov
S.I. Striganov
A. Robson
3.3.11 Beam Collimation
353(10)
S. Redaelli
R. Assmann
3.3.12 Atomic and Nuclear Properties of Materials
363(4)
4 Operational and Design Considerations
367(140)
4.1 Luminosity
367(7)
M.A. Furman
M.S. Zisman
F. Antoniou
Y. Papaphilippou
4.2 Brightness
374(3)
P. Elleaume
K.-J. Kim
C. Pellegrini
4.2.1 Particle Beam
374(1)
4.2.2 Radiation Beam
375(1)
4.2.2.1 Bending magnet radiation
375(1)
4.2.2.2 Wiggler radiation
376(1)
4.2.2.3 Undulator radiation
376(1)
4.2.2.4 Brightness comparison
377(1)
4.3 Linac Operation
377(16)
4.3.1 Operation of High Energy Electron Linacs
377(5)
T.O. Raubenheimer
4.3.2 Operation of Superconducting Electron Linacs
382(4)
S. Schreiber
4.3.3 Operation of High Power Proton and H- Linacs
386(2)
A. Aleksandrov
S. Henderson
4.3.4 Recirculated Energy Recovery Linacs
388(1)
S.A. Bogacz
D.R. Douglas
G.A. Kraffi
4.3.4.1 Recirculation and energy recovery
388(1)
4.3.4.2 System architecture and beam dynamics issues
389(4)
4.4 Bunch Compression and Emittance Exchange
393(6)
4.4.1 Bunch Compression
393(3)
P. Emma
4.4.2 Phase-Space Exchange & Repartitioning
396(3)
P. Piot
Y. Sun
4.5 Linear-Collider Final Focus Systems
399(9)
A.A. Seryi
G.R. White
R. Tomas
4.5.1 Chromaticity compensation
399(9)
4.6 Two-Beam Accelerators
408(6)
R. Corsini
4.7 Operation of Circular Accelerators
414(23)
4.7.1 Error Sources & Effects
414(1)
D. Rice
4.7.2 Orbit and Lattice Function Measurements
415(3)
D. Rice
4.7.3 Orbit Correction
418(1)
J. Wenninger
4.7.3.1 Global orbit correction
418(1)
4.7.3.2 SVD algorithm
418(1)
4.7.3.3 Micado algorithm
419(1)
4.7.3.4 Local orbit bumps
419(1)
4.7.4 Measurement and Diagnosis of Coupling and Solenoid Compensation
420(1)
D. Rubin
4.7.4.1 Sources of transverse coupling
420(1)
4.7.4.2 Solenoids
420(1)
4.7.4.3 Coupling matrix analysis
421(1)
4.7.4.4 Measurement of coupling
422(2)
4.7.4.5 Solenoid compensation
424(1)
4.7.5 Emittance Dilution Effects
425(1)
M. Syphers
4.7.5.1 Injection mismatch
425(2)
4.7.5.2 Diffusion processes
427(1)
4.7.6 Modeling and Control of Storage Rings Using Orbit Measurements
428(3)
J. Safranek
4.7.7 Beam-based optimization of nonlinear dynamics
431(1)
X. Huang
4.7.8 Real-Time Measurement and Control of Tune, Coupling and Chromaticity
432(1)
R. Jones
R. Steinhagen
4.7.8.1 Tune measurement
432(1)
4.7.8.2 Chromaticity measurement
433(1)
4.7.8.3 Coupling measurement
433(1)
4.7.8.4 Real-time control of tune, coupling & chromaticity
433(1)
4.7.9 Measurement of Dispersion by Resonant Excitation
434(1)
D.L. Rubin
4.7.9.1 Formalism
434(1)
4.7.9.2 Measurement of the coupling matrix
435(2)
4.8 Data Processing, Optimization, and Machine Learning
437(16)
4.8.1 Temporal and Spatial Correlations in BPM Measurements
437(1)
4.8.1.1 Non-invasive measurement for linacs
437(2)
J. Irwin
Y. Yan
4.8.1.2 Invasive measurement for e± circular accelerators
439(3)
J. Irwin
Y. Yan
4.8.1.3 Virtual models for proton circular accelerators
442(1)
Y. Yan
4.8.2 Numerical Optimization Algorithms for Accelerators
443(2)
J. V. Bazarov
4.8.3 Machine Learning for Accelerators
445(1)
D. Rattier
A. Edelen
E. Fol
4.8.3.1 Machine learning tasks and models
446(2)
4.8.3.2 Related topics
448(2)
4.8.3.3 Applications to accelerators
450(1)
4.8.3.4 Practical considerations
451(2)
4.9 Longitudinal Techniques In Synchrotrons and Storage Rings
453(14)
4.9.1 Transition Crossing
453(3)
J. Wei
4.9.2 RF Gymnastics in a Synchrotron
456(1)
R. Garoby
4.9.2.1 Adiabaticity
456(1)
4.9.2.2 Single bunch manipulations
456(1)
4.9.2.3 Multi-bunch manipulations
457(2)
4.9.2.4 Debunched beam manipulation
459(1)
4.9.2.5 Beam manipulations with broad-band RF systems
459(1)
4.9.3 Multiple-Frequency RF Systems
460(1)
4.9.3.1 Passive higher harmonic cavities in electron storage rings
460(2)
M. Venturini
4.9.3.2 Double rf systems in hadron rings
462(3)
E. Shaposhnikova
4.9.3.3 Multiple rf systems for unequal bunch lengths in electron rings
465(1)
M. Ries
A. Matveenko
4.9.4 Energy Measurement with Electron Beams
466(1)
J. Seeman
4.10 Ring Injection and Extraction
467(8)
G.H. Rees
4.10.1 Aspects of Slow Extraction
470(3)
P.J. Bryant
4.10.2 Injection Schemes for Ultimate Storage Ring
473(2)
M. Aiba
4.11 Beam-Beam Effects In Circular Colliders
475(11)
4.11.1 Design & Operational Considerations for Beam-Beam Effects in Circular Colliders
475(4)
D. Shatilov
A. Valishev
4.11.2 Collision Schemes for Ring Colliders
479(3)
M. Zobov
F. Zimmermann
4.11.3 Beam-Beam Compensation Schemes
482(1)
V. Shiltsev
G. Sterbini
4.11.3.1 Compensation of the head-on beam-beam effect
482(2)
4.11.3.2 Compensation of the long-range beam-beam effect
484(2)
4.12 Design Issues for Electron-Ion Colliders
486(2)
C. Montag
V. Ptitsyn
4.13 High-Intensity Hadron Beams
488(6)
4.13.1 Operational Limits in High-Intensity Hadron Accelerators
488(1)
V. Shiltsev
G. Franchetti
4.13.1.1 Linacs
489(1)
4.13.1.2 Cyclotrons
489(1)
4.13.1.3 Synchrotrons
490(2)
4.13.2 Space Charge Compensation (SCC) in Hadron Beams
492(1)
V. Shiltsev
4.13.2.1 Longitudinal SCC: Inductive Inserts
492(1)
4.13.2.2 Transverse SCC
492(2)
4.14 Operational Considerations On Cooling
494(2)
S. Nagaitsev
M. Blaskiewicz
4.15 Radiation Damage Thresholds
496(11)
H. Schonbacher
4.15.1 Organic Materials
496(4)
4.15.2 Semiconductors and Electronic Devices
500(2)
4.15.3 Ceramics
502(1)
4.15.4 Vitreous Materials
502(2)
4.15.5 Metals
504(1)
4.15.6 Summary
504(3)
5 Mechanical Considerations
507(68)
5.1 Mechanical and Thermal Properties of Structural Materials
507(5)
M. Kuchnir
5.2 Mechanical and Thermal Properties of Composite Superconductors
512(2)
R.M. Scanlan
5.3 Thermodynamic & Hydrodynamic Properties of Coolants & Cryogens
514(4)
M. McAshan
5.4 Creep and Stress Relaxation In Accelerator Components
518(1)
F. Markley
5.5 Electric and Magnetic Forces
519(1)
M. Tigner
5.6 Deflections and Buckling
520(2)
M. Tigner
5.7 Practical Heat Transfer and Fluid Flow
522(6)
M. McAshan
M. Tigner
5.8 Fabrication of Niobium Rf Structures
528(5)
T. Hays
H. Padamsee
D. Proch
5.9 Refrigeration Systems
533(7)
C. Rode
R. Ganni
5.9.1 Refrigerators
533(4)
5.9.2 Storage and Utilities
537(1)
5.9.3 Transfer Lines
538(2)
5.10 Vacuum System
540(22)
5.10.1 Requirements for Vacuum Systems
540(1)
N.B. Mistry
Y. Li
5.10.2 Units, Conversions and Some Useful Formulae
540(1)
N.B. Mistry
Y. Li
5.10.3 Conductance and Pressure Profiles
541(3)
N.B. Mistry
Y. Li
5.10.4 Pumping Methods
544(4)
N.B. Mistry
Y. Li
5.10.5 Instrumentation
548(1)
N.B. Mistry
Y. Li
5.10.6 Vacuum Chamber Design and Fabrication
549(5)
N.B. Mistry
Y. Li
5.10.7 Special Components in the Vacuum System
554(1)
N.B. Mistry
Y. Li
5.10.8 Ceramic Vacuum Chamber Design
555(2)
H.L. Phillips
5.10.9 Cryogenic Vacuum Systems
557(5)
V. Baglin
5.11 Alignment
562(3)
R. Ruland
G.L. Gassner
5.12 Magnet Supports and Alignment
565(2)
G. Bowden
5.13 Ground Vibration
567(5)
C. Montag
J. Rossbach
5.13.1 Basics
567(1)
5.13.2 Measurements
568(1)
5.13.3 Instruments
568(1)
5.13.4 Linacs
569(1)
5.13.5 Circular Accelerators
570(2)
5.13.6 Numerical Modeling
572(1)
5.14 Vibration Control In Accelerators
572(3)
C. Montag
5.14.1 General Considerations
572(1)
5.14.2 Passive Damping
573(1)
5.14.3 Active Stabilization
573(2)
6 Electrical Considerations
575(78)
6.1 Properties of Dielectrics
575(2)
M. Tigner
6.2 Properties of Conductors, Normal and Superconducting
577(5)
R.M. Scanlan
6.3 Properties of Ferromagnetic Materials
582(1)
M. Tigner
6.4 Permanent Magnet Materials
582(2)
R.D. Schlueter
6.5 Properties of Lossy Materials
584(2)
E. Chojnacki
J. Sekutowicz
6.6 Common Transmission Lines and Cavities
586(6)
M. Tigner
6.7 RF Pulse Compression
592(8)
6.7.1 Passive Pulse Compression
592(4)
Z.D. Farkas
6.7.2 Active Pulse Compression
596(1)
J. Syratchev
6.7.3 Ultra-High-Power Multimoded Rf Components
597(3)
S. Tantawi
C. Nantista
6.8 RF Windows and Cavity Coupling
600(3)
R.M. Sundelin
H.L. Phillips
6.9 Multipacting
603(3)
D. Proch
J. Sekutowicz
6.10 Polyphase Power Circuits
606(1)
M. Tigner
6.11 High Precision Power Converters
607(4)
F. Bordry
J.P. Burnet
M. Cerqueira Bastos
6.11.1 Main Parameters of Magnet Power Converters
607(1)
6.11.2 Power Converter Topologies
608(1)
6.11.2.1 Thyristor controlled rectifier
608(1)
6.11.2.2 Switch-mode power converter
609(2)
6.12 High Accuracy in Power Converters
611(5)
F. Bordry
J.P. Burnet
M. Cerqueira Bastos
6.12.1 Power Converter Control
611(1)
6.12.2 Current Measurement
612(4)
6.13 High-Gradient Limitations In Room Temperature RF Linacs
616(5)
G.A. Loew
S. Tantawi
J.W. Wang
6.14 High Voltage Technique
621(4)
J. Borburgh
B. Goddard
6.15 Coating Recipes
625(5)
6.15.1 Recipes for Coating Windows
625(1)
R.M. Sundelin
H.L. Phillips
6.15.2 Recipes for Coating Ceramic and Metal Vacuum Chambers
626(4)
S.D. Henderson
6.16 Cavity Measurements
630(3)
R. Rimmer
M. Tigner
6.16.1 Field Maps by Perturbation Methods
630(2)
6.16.2 Q and β Determination from Input Coupler
632(1)
6.17 Magnetic Measurements
633(10)
6.17.1 Accelerator Magnets
633(6)
A.K. Jain
P. Wanderer
6.17.2 Insertion Device Measurement
639(4)
S. Marks
R.D. Schlueter
6.18 High Power Switches
643(10)
6.18.1 DC Switches
643(7)
J.M. Sanders
T. Tang
M.A. Gundersen
G. Roth
6.18.2 Ultra-High-Power Rf Switches
650(3)
S. Tantawi
7 Subsystems
653(1)
7.1 Particle Sources
653(37)
7.1.1 Electron Sources
653(1)
7.1.1.1 Thermionic cathodes
653(1)
H.G. Kirk
7.1.1.2 Photocathode usage
654(1)
J.M. Maxson
7.1.1.3 Photocathodes
655(2)
T. Maruyama
M. Poelker
7.1.1.4 DC thermionic guns and preinjectors
657(1)
H.G. Kirk
7.1.1.5 Normal conducting rf photo guns
658(3)
F. Sannibale
7.1.1.6 Superconducting rf photoinjectors
661(3)
J. Sekutowicz
7.1.1.7 DC photo guns
664(2)
B. Dunham
7.1.1.8 Continuous duty preinjectors
666(2)
J. Bazarov
7.1.2 Positron Sources
668(1)
7.1.2.1 Tungsten targets
668(3)
S. Ecklund
7.1.2.2 Conversion of undulator radiation
671(3)
A. Mikhailichenko
7.1.3 Polarized Protons and Heavy Ions
674(1)
T.B. Clegg
W. Haeberli
7.1.4 H" Ion Sources
675(3)
K.N. Leung
7.1.5 Antiproton Production
678(2)
G. Dugan
7.1.6 Multi-Charged Heavy Ion Sources
680(4)
J. Alessi
A. Pikin
7.1.7 Foil Strippers
684(1)
7.1.7.1 Charge state strippers
684(3)
M.A. McMahan
7.1.7.2 Stripper foils for H- beams
687(2)
M.A. Plum
N.J. Evans
7.1.8 Lorentz Stripping of H- Ions
689(1)
M.A. Furman
7.1.9 Laser-Assisted H- Conversion to Protons
689(1)
V. Danilov
7.2 Confinement and Focusing
690(77)
7.2.1 Resistive Magnets
690(7)
F.E. Mills
D.J. Harding
7.2.2 Consequences of Saturation of High Permeability Material
697(1)
K. Halbach
R. Schlueter
7.2.3 Special Topics in Magnetics
698(1)
7.2.3.1 Properties of 3D vacuum fields integrating along a straight line
698(1)
K. Halbach
R. Schlueter
7.2.3.2 Pole width necessary to obtain desired field quality in a 2D magnet
699(1)
K. Halbach
R. Schlueter
7.2.3.3 Eddy currents
700(1)
K. Halbach
R. Schlueter
7.2.3.4 Power dissipation in the dipole coils of a storage ring with iron poles
701(1)
K. Halbach
R. Schlueter
7.2.3.5 Alpha magnet
701(1)
H. Wiedemann
7.2.4 Cosθ Superconducting Magnets
701(7)
P. Schmuser
7.2.5 Superferric Magnets
708(4)
A. Zeller
7.2.6 High Field Accelerator Magnets
712(3)
G. Sabbi
7.2.7 Kickers
715(6)
C. Burkhart
T. Beukers
7.2.8 Permanent Magnet Elements
721(7)
K. Halbach
R. Schlueter
7.2.9 Electrostatic Separators
728(2)
J.J. Welch
7.2.10 Deflection and Crab Cavities
730(1)
K. Akai
M. Tigner
7.2.10.1 Multicell deflection cavities
731(1)
7.2.10.2 Crab cavity
731(3)
7.2.11 Electrostatic Lenses
734(1)
A. Fattens
7.2.12 Lithium Lens
735(4)
V. Lebedev
J. Morgan
7.2.13 Orbit Feedback Control
739(1)
Y. Tian
L.H. Yu
7.2.13.1 Principles
739(2)
7.2.13.2 Implementation
741(2)
7.2.13.3 Local orbit feedback
743(1)
7.2.14 Feedback to Control Coupled-Bunch instabilities
743(6)
J.D. Fox
7.2.14.1 Beam diagnostics via feedback signals
749(2)
7.2.15 Beam Deflection and Collimation with Aligned Crystals
751(4)
W. Scandale
7.2.16 Septum Devices
755(2)
J. Borburgh
R. Keizer
7.2.17 Electron Lenses
757(2)
V. Shiltsev
7.2.18 Spin Manipulation
759(1)
7.2.18.1 Siberian snake
759(1)
V. Ptitsyn
7.2.18.2 Partial snake
759(1)
H. Huang
7.2.18.3 Spin rotator
760(1)
V. Ptitsyn
7.2.18.4 RF spin rotator
760(2)
M. Bai
T. Roser
7.2.19 Undulators
762(5)
E. Gluskin
7.3 Acceleration
767(56)
7.3.1 RF System Design
767(1)
7.3.1.1 RF system design for stability
767(4)
D. Boussard
7.3.1.2 Low level RF
771(3)
J.D. Fox
7.3.2 Klystron Amplifiers
774(1)
7.3.2.1 Klystrons
774(2)
D. Sprehn
H. Weise
7.3.2.2 Klystron amplifier systems
776(3)
J. Branlard
A. Gamp
7.3.3 Tetrode Amplifiers
779(3)
J.M. Brennan
7.3.4 Inductive Output Tube
782(1)
J.M. Brennan
S. Belomestnykh
7.3.5 Drift Tube Linacs
783(4)
L. Groening
J.M. Potter
7.3.6 Normal Conducting u = c Linac Structures
787(3)
G.A. Loew
7.3.7 Inductively Loaded Accelerating Cavities
790(3)
M. Yoshii
7.3.8 Fixed Frequency Cavities
793(1)
7.3.8.1 Multicell cavities
793(2)
W. Schnell
7.3.8.2 Single cell cavities
795(2)
R. Rimmer
7.3.9 Superconducting Cavities for up = c Linacs, Storage Rings, & Synchrotrons
797(7)
D. Proch H. Padamsee
7.3.10 Superconducting Cavities for up > c Linacs
804(2)
M.P. Kelly
7.3.11 Superconducting Single Cell Cavities
806(4)
S. Belomestnykh
J. Kirchgessner
7.3.12 Millimeter-Wave Linacs
810(2)
G. Burt
S. Jamison
D. Whittum
7.3.12.1 Millimeter-wave sources
812(2)
7.3.13 Plasma Accelerators
814(9)
C. Schroeder
C. Benedetti
E. Esarey
7.4 Beam Instrumentation and Diagnostics
823(62)
7.4.1 Beam Current Measurement
823(3)
J. Hinkson
D. Lipka
7.4.2 Beam Position Monitors
826(3)
J.A. Hinkson
S. Smith
G. Decker
D. Lipka
7.4.3 Transverse Beam Profile Measurements
829(1)
P. Forck
G. Kube
7.4.3.1 SEM-grids and wire scanners
830(2)
7.4.3.2 Ionization profile monitors and beam induced fluorescence
832(2)
7.4.3.3 Scintillation screens
834(3)
7.4.3.4 Optical transition radiation
837(3)
7.4.3.5 Optical diffraction radiation
840(2)
7.4.3.6 Synchrotron radiation monitors
842(6)
7.4.3.7 Laser wire scanners
848(3)
7.4.3.8 Laser interference methods
851(3)
T. Shintake
7.4.4 Transverse and Longitudinal Emittance Measurements
854(2)
J.T. Seeman
7.4.5 Emittance Measurement: Single-pass Hadron Beams
856(2)
P. Forck
P. Strehl
7.4.6 Longitudinal Distribution Function, Electrons
858(1)
N.M. Lockmann
B. Schmidt
B. Steffen
7.4.6.1 Longitudinal diagnostics with coherent radiation
858(2)
7.4.6.2 Electro-optical bunch length monitors
860(2)
7.4.7 X-Ray Beam Size Monitor
862(1)
J.P. Alexander
D.P. Peterson
7.4.7.1 X-ray source and optics
862(1)
7.4.7.2 Detector
862(1)
7.4.7.3 Beam size measurements
863(1)
7.4.7.4 Summary
864(1)
7.4.8 Streak Cameras
865(1)
J.M. Byrd
7.4.8.1 Principle of operation
865(1)
7.4.8.2 Temporal resolution
865(1)
7.4.8.3 Applications to measurement of beam dynamics
866(2)
7.4.9 Longitudinal Measurement for nonrelativistic Hadron Beams
868(3)
P. Forck
P. Strehl
7.4.10 Beam Loss Monitors
871(1)
R. Jones
K. Wittenburg
7.4.10.1 Beam loss monitoring using ionisation detection
871(2)
7.4.10.2 Beam loss monitoring using light detection
873(1)
7.4.11 Electron Cloud Measurements
874(6)
F. Caspers
F. Zimmermann
7.4.12 Schottky Spectra
880(1)
7.4.12.1 Transverse Schottky spectra and beam transfer functions
880(2)
O. Boine-Frankenheim
V. Komilov
S. Paret
7.4.12.2 Longitudinal Schottky spectra and beam transfer function
882(3)
E. Shaposhnikova
7.5 Impedance Determination
885(12)
7.5.1 Bench Measurements
885(5)
F. Caspers
7.5.2 Beam-Based Characterization of Coupled Bunch Instabilities
890(1)
J.M. Byrd
7.5.2.1 Passive techniques
891(1)
7.5.2.2 Active techniques
892(1)
7.5.3 Other Beam Based Methods to Measure Impedances
893(2)
J. Gareyte
J.S. Berg
7.5.4 Direct Wakefield Measurement
895(2)
J. Power
G. Ha
7.6 Polarimeters
897(5)
7.6.1 Lepton Polarimeters
897(1)
E. Chuaakov
D. Gaskell
J. Grames
M. Woods
7.6.1.1 Mott polarimetry
898(1)
7.6.1.2 Møller polarimetry
898(1)
7.6.1.3 Compton polarimetry
899(1)
7.6.2 Proton Polarimeters
900(2)
Y. Makdisi
7.7 Controls and Timing
902(4)
K. Rehlich
T. Wilksen
7.8 Femtosecond Precision Optical Synchronization
906
F. Lohl
C. Sydlo
Author Index 1(4)
Subject Index 5