Muutke küpsiste eelistusi

E-raamat: Handbook of Charged Particle Optics

Edited by (Rockaway Beach, Oregon, USA)
  • Formaat: 666 pages
  • Ilmumisaeg: 19-Dec-2017
  • Kirjastus: CRC Press Inc
  • Keel: eng
  • ISBN-13: 9781420045550
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 240,50 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: 666 pages
  • Ilmumisaeg: 19-Dec-2017
  • Kirjastus: CRC Press Inc
  • Keel: eng
  • ISBN-13: 9781420045550
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

With the growing proliferation of nanotechnologies, powerful imaging technologies are being developed to operate at the sub-nanometer scale. The newest edition of a bestseller, the Handbook of Charged Particle Optics, Second Edition provides essential background information for the design and operation of high resolution focused probe instruments.

The book’s unique approach covers both the theoretical and practical knowledge of high resolution probe forming instruments. The second edition features new chapters on aberration correction and applications of gas phase field ionization sources. With the inclusion of additional references to past and present work in the field, this second edition offers perfectly calibrated coverage of the field’s cutting-edge technologies with added insight into how they work.

Written by the leading research scientists, the second edition of the Handbook of Charged Particle Optics is a complete guide to understanding, designing, and using high resolution probe instrumentation.

Arvustused

In giving [ a] combination of practical and theoretical aspects, the book is a valuable reference when it comes to the design of charged particle optical elements in microscopy such as scanning electron microscopes or scanning transmission electron microscopes. The index is very comprehensive and helps in making the book a valuable reference. Although the text comes from 18 different authors each with their individual style, it is nevertheless well written and clear throughout. The eight unnumbered colour pages at the centre of the book are also a nice feature. Altogether, the book is valuable for experts and those who want to become experts concerned with the design and understanding of charged particle optics as used in electron microscopy. Owing to the rigorous mathematical treatment of particle optical effects, it will also help in the analysis of observed effects such as aberrations and their correction, space charge effects, as well as issues concerning the resolution obtained in microscopy. Manuel Vogel, Contemporary Physics, Vol. 51, Issue 4, July 2010

Preface to the Second Edition vii
Editor ix
Contributors xi
Review of Zro/W Schottky Cathode
1(28)
Lyn W. Swanson
Gregory A. Schwind
Introduction
1(1)
ZrO/W Cathode Background
2(3)
Schottky Emission
5(1)
Extended Schottky Emission
6(2)
Relationship among β, Emitter Radius, and Work Function
8(2)
Angular Intensity/Extraction Voltage Relationships
10(2)
Emitter Shape Stability
12(7)
Total Energy Distribution
19(3)
Emitter Brightness
22(1)
Current Fluctuations
23(1)
Emitter Environmental Requirements
24(2)
Emitter Life Considerations
26(1)
Summary
27(2)
Acknowledgment
28(1)
References
28(1)
Liquid Metal Ion Sources
29(58)
Richard G. Forbes
Graem L. R. Mair
General Introduction
31(3)
Field Ion Emission Sources
31(1)
Liquid Metal Ion Sources---General Background
32(1)
Conventions
33(1)
Introduction to LMIS Behavior
34(2)
The Shape of the Liquid Emitter
34(1)
Electrohydrodynamic Spraying
35(1)
Time-Dependent Behavior
35(1)
The Most-Steady Regime
35(1)
The Pulsation Regime
35(1)
The Upper Unsteady Regime
36(1)
Basic Theory---Ion Emission Related
36(8)
Charged-Surface Models and Maxwell Stress
36(1)
Field Evaporation
37(1)
Introduction
37(1)
Relevance of FEV Theory
37(1)
FEV Rate Constant and Time Constant
37(1)
Field Evaporation in the Equilibrium and Supply Limits
38(1)
Prediction of Evaporation-Field Values
39(1)
Escape Mechanism
40(1)
Field Dependence of Activation Energy
40(2)
Field-Emitted Vacuum Space Charge
42(2)
Basic Theory---Electrohydrodynamics
44(7)
The Formula for Surface Pressure Jump
44(1)
Electrohydrostatic Equilibrium and Stability Conditions
45(1)
Taylor's Mathematical Cone
46(1)
The Steady High-Electrical-Conducitivity Gilbert-Gray Cone-Jet
47(1)
Pressure Relationships
47(1)
Limiting Parameter Values
48(1)
Nonturbulent Flow
48(1)
Viscous-Loss Terms
49(1)
Quasi-Ellipsoidal Model for the Liquid Cap
49(1)
Pressure Drop in the Cone-Jet
50(1)
The Zero-Base-Pressure Approximation
50(1)
Apex Boundary Conditions
50(1)
The Kingham and Swanson Model
50(1)
Steady-State Boundary Condition Based on Current Densities
51(1)
Steady-State Current-Related Characteristics
51(8)
Basic Theoretical Formulation
52(2)
Extinction and Collapse Voltages
54(1)
Current-Voltage Characteristic above Extinction
54(1)
Mair's Equation
54(1)
Mahoney's Equation
55(1)
The Effect of Flow Impedance
56(1)
Effects of Temperature
57(1)
Dependence of Cusp Length on Emission Current
57(1)
Extinction Current
57(1)
The Practical LMIS as a Physical Chaotic Attractor
58(1)
Energy Distribution and Ion-Optical Characteristics
59(6)
Introduction
59(1)
Ion Energy Distribution
60(1)
Onset Energy Deficits
60(1)
Energy Spreads
61(1)
Distribution Shape and the Low-Energy Tail
62(1)
Effects of Temperature
62(1)
Ion-Optical Effects
63(1)
Angular Intensities
63(1)
Optical Source Size
64(1)
Ionization Mechanisms and Emitted Species
65(2)
Elemental Ion Sources
65(1)
Atomic Ions
65(1)
Other Atomic Ion Generation Mechanisms
65(1)
Cluster Ions
65(1)
Alloy Ion Sources
66(1)
Time-Dependent Phenomena
67(4)
Pulsation
67(1)
Droplet Emission in the Upper Unsteady Regime
68(1)
Globule Emission from the Needle and Cone
69(1)
Source Turn-On
69(2)
Numerical Modeling of Liquid-Shape Development
71(1)
Technological Issues
71(3)
Fabrication of the Normal LMIS
71(1)
Needle Fabrication
71(1)
Needle Wetting
71(2)
Reservoir and Heating Arrangements
73(1)
Source Operation
73(1)
General Conditions
73(1)
Secondary Electrons
74(1)
Alternative LMIS Geometries
74(1)
Concluding Remarks
74(13)
Acknowledgment
76(1)
Appendix: Numerical Data
76(4)
References
80(7)
Gas Field Ionization Sources
87(42)
Richard G. Forbes
Introduction
88(3)
Advantages, a Challenges and a Trade-Off
91(1)
Advantages of a Gas Field Ionization Source
91(1)
The Gas-Pressure Trade-Off
91(1)
Secondary Electrons
92(1)
Technological Development
92(1)
Gas Field Ionization Fundamentals
93(4)
Preliminaries
93(1)
Emitter Formation
93(1)
Field Definitions
93(1)
The Ionoptical Surface
93(1)
The Real-Source Current-Density Distribution
94(1)
Gas-Atom Behavior
94(1)
The Critical Surface and the Firmly Field-Adsorbed Layer
94(1)
The Long-Range Polarization Potential-Energy Well
95(1)
Typical Gas-Atom History
95(1)
Best Image Field and Best Source Field
96(1)
Ion Generation
96(1)
Ion Generation Theory
96(1)
Energy Spreads
97(1)
Theory of Emission Current
97(4)
Introduction
97(2)
Supply Current and Effective Capture Area
99(1)
Ionization Regimes
99(1)
Gas Temperature at Ionization
100(1)
Supply-and-Capture Regime
100(1)
Basic Real-Source Data
101(2)
Emission-Site Radius
101(2)
Field Ion Microscope Resolution Criterion
103(1)
Illustrative Values
103(1)
The Spherical Charged Particle Emitter
103(5)
Basic Ideas
103(1)
The Optical Model
103(1)
Ions on Radial Trajectories
103(1)
The Effect of Transverse Velocity
103(2)
The Blurred Beam
105(1)
Objects and Machines
105(1)
Optical Objects Generated by the Spherical Charged Particle Emitter
105(1)
Machines Based on the Muller Emitter
106(1)
Field Ion Microscope Resolving Power
107(1)
Source Sizes and Related Topics
107(1)
Virtual Source for a GFIS-Based Machine
107(1)
Transverse Zero-Point Energy Spread
108(1)
Minimum Value for P2
108(1)
Effect on Total Energy Distribution
108(1)
Other Effects of Ion Energy Spread
108(1)
The Role of the Weak Lens
108(4)
Introduction
109(1)
Angular Magnification
109(1)
Transverse Magnification
110(1)
Muller Emitter Source Sizes
111(1)
Projection Magnification
111(1)
Field Ion Microscope Image-Spot Size
111(1)
Numerical Trajectory Analyses
112(1)
Aberrations
112(2)
Space Charge
112(1)
LocalAngular Distortion
113(1)
Diffraction at the Beam Acceptance Aperture
113(1)
Spherical and Chromatic Aberration
113(1)
Gas Field Ionization Source Radius
113(1)
Column Aberrations
114(1)
Source Properties
114(2)
Alternative Figure of Merit
115(1)
Summary and Discussion
116(13)
A Speculation about New Machines of Nanotechnology
117(1)
Acknowledgment
117(1)
Appendix: Corrected Southon Gas-Supply Theory
117(1)
Preliminary Definitions
118(1)
Supply to a Hemisphere
118(1)
Supply to a Cylinder
118(1)
Supply to a Cone
119(1)
Total Captured Flux for Muller Emitter
120(1)
Numerical Illustrations
120(2)
Appendix: Glossary of Special Terms
122(2)
List of Abbreviations
124(1)
References
125(4)
Magnetic Lenses for Electron Microscopy
129(32)
Katsushige Tsuno
Introduction
129(3)
Design Procedure of Magnetic Lenses
132(13)
Design Procedure of Pole Pieces
132(4)
Design Procedure of the Magnetic Circuit
136(1)
Design of the Coil
136(4)
Design of a Pole and a Yoke
140(1)
Magnetic Materials
141(1)
Saturation Magnetic Flux Densities
141(2)
Homogeneity of Magnetic Properties of Lens Materials
143(2)
Examples of Magnetic Lens Design
145(16)
Aberration Correctors
145(1)
Generation of Multipole Field Components with a Dodecapole
145(1)
Hexapole Spheical Aberration Corrector with Transfer Doublet
145(3)
Combined Electrostatic and Magnetic Quardurpole Lenses as a Chromatic Aberration Corrector
148(2)
Objective Lens Design of Low-Energy Electron Microscope/Photoelectron Emission Microscope
150(2)
Lotus Root Lens as a Multibeam Electron Lithography System
152(1)
Various Objective Lenses for Low-Voltage Scanning Electron Microscope
153(3)
Combined Electrostatic and Magnetic Lenses for Low- Voltage Scanning Electron Microscope
156(1)
For Further Information
157(1)
References
157(4)
Electrostatic Lenses
161(48)
Bohumila Lencova
Introduction
162(4)
Optical Properties of Electrostatic Lenses
166(19)
Evaluation of Lens Properties
166(2)
The Equation of Motion and the Trajectory Equation
168(2)
Electrostatic Lens as a Thick Lens
170(1)
Types of Electrostatic Lenses
171(1)
Matrix Description of the Trajectory and Models of Some Electrostatic Lenses
172(1)
Matrix Description
172(1)
Lens Action of an Aperture Lens
172(1)
Lens Action of the Homogeneous Field
173(1)
Model of Lens Action (Cathode Lens, Immersion Lens, and Unipotential Lens)
174(4)
Aberrations of Electrostatic Lenses
176(1)
Typical Properties of Round Electrostatic Lenses
177(1)
Two-Electrode Immersion Lenses
177(1)
Three-Electrode Unipotential Lenses
178(1)
Multielement and Zoom Lenses (Movable Lens)
179(1)
Immersion Objective Lenses
179(2)
Electron Mirror
181(1)
Grid and Foil Lenses
181(2)
Cylindrical and Astigmatic Lenses
183(1)
Optimization
183(2)
Practical Design of Electrostatic Lenses
185(7)
Design Problems
185(2)
Electrical Insulation and Breakdown in Vacuum Gap
187(1)
Insulator Materials and Design
188(2)
Manufactring and Alignment Accuracy
190(1)
Environmental and System Considerations
191(1)
Examples
192(8)
Electrostatic Transmission Electron Microscopes
192(2)
Low-Voltage Transmission Electron Microscopy
194(1)
Low-Energy and Photoemission Electron Microscoeps
194(2)
Scanning Electron Microscopes (Compond and Retarding Lenses)
196(3)
Other Applications of Electrostatic Lenses
199(1)
Ion Microscopy and Lithography
199(1)
Conclusion
200(1)
Further Information
200(9)
Acknowledgments
201(1)
References
201(8)
Aberrations
209(132)
Peter W. Hawkes
Introduction
210(1)
Methods of Calculating Aberrations
211(10)
Geometric and Chromatic Aberration Coefficients
221(65)
Introduction
221(1)
Round Lenses
221(28)
Quadrupole Lenses
249(3)
Sextupoles
252(2)
Superimposed Deflection Fields and Round Lenses
254(5)
Mirrors and Cathode Lenses
259(6)
Systems with Curved Optic Axes
265(6)
Wien Filters
271(15)
Aberration Representation and Symmetry
286(6)
Representation
286(4)
Symmetry
290(2)
Parasitic Aberrations
292(2)
Aberration Correction
294(47)
Introduction
294(2)
Minimization
296(1)
Correction
297(1)
Quadrupoles and Octopoles
297(1)
Sextupoles
298(2)
Correctors of Chromatic Aberration
300(1)
General Multipole Correctors
301(3)
Mirrors
304(1)
Other Techniques
305(5)
For Further Information
310(1)
Acknowledgmens
310(1)
References
311(28)
Appendix: A Brief Introduction to Differential Algebra
339(2)
Space Charge and Statistical Coulomb Effects
341(50)
Pieter Kruit
Guus H. Jansen
Introduction
342(2)
Analytical Approach to Space Charge Defocus and Aberrations
344(5)
Laminar Flow and Space Charge Defocus
344(1)
Equations for Space Charge Effects
344(1)
The Ray Equation
344(1)
Laminar Flow
345(1)
Space Charge Defocus
346(1)
Space Charge Aberrations
347(1)
Numerical Examples
348(1)
Analytical Approach to Statistical Coulomb Effect
349(16)
General Formulation of the Problem
349(3)
Reduction of the N-Particle Problem
352(1)
Two-Particle Dynamics
353(1)
Overview of Approximate Solutions
354(1)
Models Derived from Plasma Physics
354(1)
First-Order Perturbation Models
355(2)
Closest Encounter Approximation
357(1)
Introduction
357(1)
Extend Two-Particle Approxmation
358(1)
Displacement Distribution in the Extended Two-Particle Approximation
359(5)
Addition of Displacement in Several Beam Segments
364(1)
Analytical Expressions for Trajectory Displacement
365(5)
Parameter Dependencies When the Collisions Are Weak and Incomplete
365(3)
Summary of Equations for Trajectory Displacement
368(1)
Numerical Examples
369(1)
Analytical Expressions for the Boersch Effect
370(5)
Parameter Dependencies When the Collisions Are Weak
370(2)
Summary of Equations for the Boersch Effect
372(1)
Thermodynamic Limits
373(1)
Numerical Examples
374(1)
Monte Carlo Approach
375(2)
Statistical Coulomb Effects in the Design of Microbeam Columns
377(5)
Combination of Trajectory Displacement and Othe Contributions to the Probe Size
377(4)
Inclusion of the Boersch Effect
381(1)
Design Rules for the Minimization of Statistical Interactions
381(1)
A Strategy for the Calculation of Interaction Effects
381(1)
Nonmicrobeam Instruments
382(3)
Discussion
385(6)
List of Symbols
386(1)
Acknowledgment
387(1)
References
387(4)
Resolution
391(46)
Mitsugu Sato
Preface
392(1)
Introduction
393(2)
General Concept of Resolution and Conventional Criterions
395(7)
Origin of the Concept of Resolution and Rayleigh's Criteion
395(1)
Image Formation for an Optical System by Means of Charged Particle Beams
396(2)
Conventional Definitions of the Resolution
398(1)
Resolution Defined by Beam Size
398(1)
Definition of Resolution Based on the Contrast Performance of an Optical System
399(3)
A New Defintion of the Resolution Based on Image Quality
402(4)
A Concept of the Resolution in Terms of the Quality of Optical Image
402(1)
Figure of Merit for the Quality of an Optical Image
403(2)
Relation Between Rayleigh's Criterion and the Density-of-Information Passing Capacity
405(1)
Limitations of the Application
406(1)
Calculation of the Density-of-Information Passing Capacity
406(19)
Spatial Frequency Response for an Electron Beam
406(1)
Two-Dimensional Fourier Transform of Source Intensity Distribution
406(1)
Optical Transfer Function for a Monoenergetic Beam
407(2)
Optical Transfer Function with Chromatic Aberration Included
409(2)
Spatial Frequency Response for Ion Beams
411(1)
Mathematical Model for Current Density fo Monoenergetic Beams
411(1)
Current Density of Monoenergetic Beams for a Rotationally Symmetric System
412(3)
Properties of the Best Focus Position
415(1)
Best Focus Position for Electron Beams
415(1)
Best Focus Position for Ion Beams
416(1)
Approximation Method for the Density-of-Information Passing Capacity
416(1)
Basis of the Concept for the IPC Approximation
417(1)
Synthesis of Wave and Geometric Optics
418(4)
The Fitting Functions for the IPC
422(1)
Comparison Between Fitting Method and Numerical Computation
423(1)
Comparison Between Calculated Resolution and Experimental Results
423(2)
Optimum Condition and Attainable Resolution
425(6)
Optimum Condition for a Diffraction-Limited System
426(2)
Optimum Condition for a Source-Limited System
428(3)
Measurement of the Resolution
431(2)
Other Factors Limiting the Resolution
433(4)
Effect of the Information Size in the Specimen
433(1)
Effect of Vibration
433(1)
Effect of a Magnetic Stray Field
434(1)
Acknowledgment
434(1)
References
434(3)
The Scanning Electron Microscope
437(60)
Andras E. Vladar
Michael T. Postek
Introduction
438(1)
Scanning Electron Microscope Architecture
438(11)
Electron Source Types
440(1)
Point Cathode Electron Source Types
440(3)
Lens Design
443(1)
Immersion Lens Technology
443(1)
Extended Field Lens Technology
444(2)
Scanning Electron Microscope Electronics and Digital Image Storage and Image Analysis
446(2)
TV Rate Scanning
448(1)
Digital Image Storage
449(1)
Digital Image Transmission
449(1)
Real-Time Image Analysis and Processing
449(1)
Optimization of Operating Conditions
449(1)
The Scanning Electron Microscope Sample
449(3)
Nondestructive Inspection
450(1)
Total Electron Emission
451(1)
Electron Beam---Speciment Interactions
452(4)
Electron Range
452(3)
Modeling of the Scanning Electron Microscope Signal
455(1)
Scanning Electron Microscope Singnals
456(41)
Secondary Electron
456(1)
Collection of Secondary Electrons
457(2)
Backscattered Electrons
459(1)
Collection of Backscattered Electrons
460(1)
X-Rays
461(1)
Collection of X-Rays
461(2)
Absorbed Electrons
463(1)
Cathodoluminescence (Light)
464(1)
Detecting Cathodoluminescence
464(1)
Auger Electrons
464(1)
Transmitted Electrons
465(32)
The Scanning Transmission Electron Microscope
497(26)
Albert V. Crewe
Peter D. Nellist
Editor's Preface
498(1)
Preface to Updated Version
498(1)
Introduction
498(1)
Genral Principles
499(1)
Imaging and Spectroscopy in the Scanning Transmission Electron Microscope
500(3)
Bright-Field Imaging
500(1)
Annular Dark-Field Imaging
501(1)
Spectroscopy
502(1)
Other Detection Modes and Signals
503(1)
Formation of the Electron Probe
503(3)
Geometric Size
504(1)
Diffraction
504(1)
Chromatic Aberration
505(1)
Spherical Aberration
505(1)
Brightness and the Effect of Source Size
506(2)
Optimization of a Focused Probe
508(2)
Spherical Aberration Plus Diffraction
509(1)
Chromatic Aberration Plus Diffraction
510(1)
Application to the Scanning Transmission Electron Microscope
510(1)
Components of the Electron-Optical Column
511(7)
The Electron Source
511(1)
The Cold Field Emitter Source
512(1)
The Thermally Assisted, Zirconium-Treated Field Emitter Source
513(1)
The Electron Gun
513(2)
The Magnetic Lenses
515(1)
Column Designs and Performance
515(2)
Other Features of the Optical Column
517(1)
Scanning Transmission Electron Microscope Types
518(1)
Correction of Spherical Aberration in Scanning Transmission Electron Microscope
518(5)
Acknowledgment
519(1)
Referenes
520(3)
Focused Ion Beams
523(78)
M. Utlaut
Introduction
523(1)
A Short History
524(1)
Uses of Focused Ion Beam: The Exploitation of Destruction
525(1)
Ion-Sample Interactions
526(8)
System Architecture Considerations
534(5)
Focused Ion Beam Microscopy: Ions and Electrons
539(1)
General Imaging Considerations
539(5)
The Vexations of Charging Samples
544(5)
Applications of Focused Ion Beam
549(44)
Micromaching and Gas-Assiested Eching
549(10)
Gas-Assisted Deposition of Materials
559(8)
Scanning Ion Microscopy
567(4)
Secondary-Ion Mass Spectrometry
571(10)
Focused Ion Beam Implantation
581(10)
Lithography
591(2)
New Directions
593(1)
The Future
594(7)
For Further Information
595(1)
Acknowledgments
595(1)
Appendix: What is Boustrophedonic?
595(1)
References
596(5)
Aberration Correction in Electron Microscopy
601(40)
Ondrej L. Krivanek
Niklas Dellby
Matthew F. Murfitt
Introduction
601(1)
Historical Background
602(3)
Proof-of-Principle Correctors
603(1)
Working Correctors
604(1)
Third-Generation correctors
605(1)
Corrector Optics
605(22)
Trajectory Calculation
605(1)
The Aberration Function
606(8)
The Effect of a Single Multipole
614(3)
Combination Aberrations
617(1)
Misalignment Aberrations
618(1)
Corrector Types
619(6)
Corrector Operation
625(1)
Aberrations of the Total System
626(1)
Aberration Diagnosis
627(4)
Diagnostic Methods
627(4)
Computer Control
631(1)
Aberration-Corrected Optical Column
631(6)
Description of the Column
631(2)
Performance of the System
633(4)
Conclusion
637(4)
Acknowledgment
638(1)
References
638(2)
Appendix
640(1)
Appendix: Computational Resources for Electron Microscopy 641(4)
J. Orloff
Peter W. Hawkes
Bohumila Lencova
Index 645
Univeristy of Maryland