Muutke küpsiste eelistusi

E-raamat: Handbook of Computational Econometrics

Edited by (Newtonville, MA, USA), Edited by
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 158,02 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

"Handbook of Computational Econometrics examines the state of the art of computational econometrics and provides exemplary studies dealing with computational issues arising from a wide spectrum of econometric fields including such topics as bootstrapping, the evaluation of econometric software, and algorithms for control, optimization, and estimation. Each topic is fully introduced before proceeding to a more in-depth examination of the relevant methodologies and valuable illustrations. This book: Provides self-contained treatments of issues in computational econometrics with illustrations and invaluable bibliographies. Brings together contributions from leading researchers. Develops the techniques needed to carry out computational econometrics. Features network studies, non-parametric estimation, optimization techniques, Bayesian estimation and inference, testing methods, time-series analysis, linear and nonlinear methods, VAR analysis, bootstrapping developments, signal extraction, software history and evaluation. This book will appeal to econometricians, financial statisticians, econometric researchers and students of econometrics at both graduate and advanced undergraduate levels"--Provided by publisher.

"This project's main focus is to provide a handbook on all areas of computing that have a major impact, either directly or indirectly, on econometric techniques and modelling. The book sets out to introduce each topic along with a more in-depth look at methodologies used in computational econometrics, to include use of econometric software and evaluation, bootstrap testing, algorithms for control and optimization and looks at recent computational advances"--Provided by publisher.



Handbook of Computational Econometrics examines the state of the art of computational econometrics and provides exemplary studies dealing with computational issues arising from a wide spectrum of econometric fields including such topics as bootstrapping, the evaluation of econometric software, and algorithms for control, optimization, and estimation. Each topic is fully introduced before proceeding to a more in-depth examination of the relevant methodologies and valuable illustrations.

This book:

  • Provides self-contained treatments of issues in computational econometrics with illustrations and invaluable bibliographies.
  • Brings together contributions from leading researchers.
  • Develops the techniques needed to carry out computational econometrics.
  • Features network studies, non-parametric estimation, optimization techniques, Bayesian estimation and inference, testing methods, time-series analysis, linear and nonlinear methods, VAR analysis, bootstrapping developments, signal extraction, software history and evaluation.

This book will appeal to econometricians, financial statisticians, econometric researchers and students of econometrics at both graduate and advanced undergraduate levels.

List of Contributors
xv
Preface xvii
Econometric software
1(54)
Charles G. Renfro
Introduction
1(4)
The nature of econometric software
5(14)
The characteristics of early econometric software
9(2)
The expansive development of econometric software
11(6)
Econometric computing and the microcomputer
17(2)
The existing characteristics of econometric software
19(20)
Software characteristics: broadening and deepening
21(4)
Software characteristics: interface development
25(4)
Directives versus constructive commands
29(6)
Econometric software design implications
35(4)
Conclusion
39(2)
Acknowledgments
41(1)
References
41(14)
The accuracy of econometric software
55(26)
B. D. McCullough
Introduction
55(1)
Inaccurate econometric results
56(9)
Inaccurate simulation results
57(1)
Inaccurate GARCH results
58(4)
Inaccurate VAR results
62(3)
Entry-level tests
65(1)
Intermediate-level tests
66(9)
NIST Statistical Reference Datasets
67(4)
Statistical distributions
71(1)
Random numbers
72(3)
Conclusions
75(1)
Acknowledgments
76(1)
References
76(5)
Heuristic optimization methods in econometrics
81(40)
Manfred Gilli
Peter Winker
Traditional numerical versus heuristic optimization methods
81(6)
Optimization in econometrics
81(2)
Optimization heuristics
83(2)
An incomplete collection of applications of optimization heuristics in econometrics
85(1)
Structure and instructions for use of the chapter
86(1)
Heuristic optimization
87(10)
Basic concepts
87(1)
Trajectory methods
88(2)
Population-based methods
90(3)
Hybrid metaheuristics
93(4)
Stochastics of the solution
97(5)
Optimization as stochastic mapping
97(2)
Convergence of heuristics
99(2)
Convergence of optimization-based estimators
101(1)
General guidelines for the use of optimization heuristics
102(7)
Implementation
103(5)
Presentation of results
108(1)
Selected applications
109(5)
Model selection in VAR models
109(2)
High breakdown point estimation
111(3)
Conclusions
114(1)
Acknowledgments
115(1)
References
115(6)
Algorithms for minimax and expected value optimization
121(32)
Panos Parpas
Berc Rustem
Introduction
121(1)
An interior point algorithm
122(15)
Subgradient of &Phis;(x) and basic iteration
125(5)
Primal-dual step size selection
130(1)
Choice of c and μ
131(6)
Global optimization of polynomial minimax problems
137(6)
The algorithm
138(5)
Expected value optimization
143(4)
An algorithm for expected value optimization
145(2)
Evaluation framework for minimax robust policies and expected value optimization
147(1)
Acknowledgments
148(1)
References
148(5)
Nonparametric estimation
153(30)
Rand R. Wilcox
Introduction
153(3)
Comments on software
155(1)
Density estimation
156(4)
Some illustrations
158(2)
Nonparametric regression
160(11)
An illustration
164(2)
Multiple predictors
166(3)
Some illustrations
169(1)
Estimating conditional associations
169(1)
An illustration
170(1)
Nonparametric inferential techniques
171(6)
Some motivating examples
171(1)
A bootstrap-t method
172(1)
The percentile bootstrap method
173(1)
Simple ordinary least squares regression
174(1)
Regression with multiple predictors
175(2)
References
177(6)
Bootstrap hypothesis testing
183(32)
James G. MacKinnon
Introduction
183(1)
Bootstrap and Monte Carlo tests
184(3)
Finite-sample properties of bootstrap tests
187(2)
Double bootstrap and fast double bootstrap tests
189(4)
Bootstrap data generating processes
193(7)
Resampling and the pairs bootstrap
193(2)
The residual bootstrap
195(1)
The wild bootstrap
196(1)
Bootstrap DGPs for multivariate regression models
197(1)
Bootstrap DGPs for dependent data
198(2)
Multiple test statistics
200(4)
Tests for structural change
201(1)
Point-optimal tests
202(1)
Non-nested hypothesis tests
203(1)
Finite-sample properties of bootstrap supF tests
204(6)
Conclusion
210(1)
Acknowledgments
210(1)
References
210(5)
Simulation-based Bayesian econometric inference: principles and some recent computational advances
215(66)
Lennart F. Hoogerheide
Herman K. van Dijk
Rutger D. van Oest
Introduction
215(2)
A primer on Bayesian inference
217(16)
Motivation for Bayesian inference
217(1)
Bayes' theorem as a learning device
218(7)
Model evaluation and model selection
225(7)
Comparison of Bayesian inference and frequentist approach
232(1)
A primer on simulation methods
233(28)
Motivation for using simulation techniques
233(1)
Direct sampling methods
234(2)
Indirect sampling methods yielding independent draws
236(13)
Markov chain Monte Carlo: indirect sampling methods yielding dependent draws
249(12)
Some recently developed simulation methods
261(15)
Adaptive radial-based direction sampling
262(10)
Adaptive mixtures of t distributions
272(4)
Concluding remarks
276(1)
Acknowledgments
277(1)
References
277(4)
Econometric analysis with vector autoregressive models
281(40)
Helmut Lutkepohl
Introduction
281(4)
Integrated variables
282(1)
Structure of the chapter
283(1)
Terminology and notation
284(1)
VAR processes
285(4)
The levels VAR representation
285(1)
The VECM representation
286(2)
Structural forms
288(1)
Estimation of VAR models
289(6)
Estimation of unrestricted VARs
289(2)
Estimation of VECMs
291(2)
Estimation with linear restrictions
293(1)
Bayesian estimation of VARs
294(1)
Model specification
295(3)
Choosing the lag order
295(2)
Choosing the cointegrating rank of a VECM
297(1)
Model checking
298(5)
Tests for residual autocorrelation
298(2)
Tests for non-normality
300(1)
ARCH tests
301(1)
Stability analysis
301(2)
Forecasting
303(2)
Known processes
303(1)
Estimated processes
304(1)
Causality analysis
305(1)
Intuition and theory
305(1)
Testing for Granger-causality
306(1)
Structural VARs and impulse response analysis
306(5)
Levels VARs
306(2)
Structural VECMs
308(1)
Estimating impulse responses
309(1)
Forecast error variance decompositions
310(1)
Conclusions and extensions
311(1)
Acknowledgments
311(1)
References
312(9)
Statistical signal extraction and filtering: a partial survey
321(56)
D. Stephen
G. Pollock
Introduction: the semantics of filtering
321(1)
Linear and circular convolutions
322(4)
Kernel smoothing
324(2)
Local polynomial regression
326(6)
The concepts of the frequency domain
332(9)
The periodogram
334(1)
Filtering and the frequency domain
335(2)
Aliasing and the Shannon-Nyquist sampling theorem
337(2)
The processes underlying the data
339(2)
The classical Wiener-Kolmogorov theory
341(4)
Matrix formulations
345(5)
Toeplitz matrices
346(2)
Circulant matrices
348(2)
Wiener-Kolmogorov filtering of short stationary sequences
350(4)
Filtering nonstationary sequences
354(5)
Filtering in the frequency domain
359(1)
Structural time-series models
360(8)
The Kalman filter and the smoothing algorithm
368(5)
The smoothing algorithms
371(1)
Equivalent and alternative procedures
372(1)
References
373(4)
Concepts of and tools for nonlinear time-series modelling
377(52)
Alessandra Amendola
Christian Francq
Introduction
377(5)
Nonlinear data generating processes and linear models
382(3)
Linear and nonlinear processes
382(2)
Linear representation of nonlinear processes
384(1)
Testing linearity
385(10)
Weak white noise and strong white noise testing
386(3)
Testing linearity against a specific nonlinear model
389(3)
Testing linearity when the model is not identified under the null
392(3)
Probabilistic tools
395(6)
A strict stationarity condition
395(2)
Second-order stationarity and existence of moments
397(1)
Mixing coefficients
398(1)
Geometric ergodicity and mixing properties
399(2)
Identification, estimation and model adequacy checking
401(8)
Consistency of the QMLE
402(2)
Asymptotic distribution of the QMLE
404(2)
Identification and model adequacy
406(3)
Forecasting with nonlinear models
409(7)
Forecast generation
409(3)
Interval and density forecasts
412(2)
Volatility forecasting
414(1)
Forecast combination
415(1)
Algorithmic aspects
416(6)
MCMC methods
416(2)
Optimization algorithms for models with several latent processes
418(4)
Conclusion
422(1)
Acknowledgments
422(1)
References
422(7)
Network economics
429(58)
Anna Nagurney
Introduction
429(3)
Variational inequalities
432(11)
Systems of equations
433(1)
Optimization problems
434(2)
Complementarity problems
436(2)
Fixed point problems
438(5)
Transportation networks: user optimization versus system optimization
443(11)
Transportation network equilibrium with travel disutility functions
444(3)
Elastic demand transportation network problems with known travel demand functions
447(2)
Fixed demand transportation network problems
449(1)
The system-optimized problem
450(4)
Spatial price equilibria
454(4)
The quantity model
455(2)
The price model
457(1)
General economic equilibrium
458(1)
Oligopolistic market equilibria
459(4)
The classical oligopoly problem
460(1)
A spatial oligopoly model
461(2)
Variational inequalities and projected dynamical systems
463(7)
Background
463(2)
The projected dynamical system
465(5)
Dynamic transportation networks
470(6)
The path choice adjustment process
470(2)
Stability analysis
472(1)
Discrete-time algorithms
473(2)
A dynamic spatial price model
475(1)
Supernetworks: applications to telecommuting decision making and teleshopping decision making
476(2)
Supply chain networks and other applications
478(2)
Acknowledgments
480(1)
References
480(7)
Index 487
Erricos Kontoghiorghes is Associate Professor at the School of Economics and Management in Nicosia, Cyprus, and holds a visiting professorship at Birkbeck College since 2003. He has authored and edited seven books. He is a Co-Editor of the journal Computational Statistics & Data Analysis, Associate Editor of the journal Computational Management Science (Springer), and was Editor-in-Chief of the Handbook Series of Computing and Statistics with Applications.

Professor David Besley is Professor at the Department of Economics Boston College, USA. He has written many articles and holds editorial positions for several journals including Computational Economics and is the Associate Editor for Econometrics, Computational Statistics and Data Analysis and International Journal of Forecasting.