Muutke küpsiste eelistusi

E-raamat: Handbook of Computational Group Theory

(Technische Universit¿t, Braunschweig, Germany), (University of Auckland, New Zealand), (University of Warwick, Coventry, UK)
Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 59,79 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The origins of computation group theory (CGT) date back to the late 19th and early 20th centuries. Since then, the field has flourished, particularly during the past 30 to 40 years, and today it remains a lively and active branch of mathematics.

The Handbook of Computational Group Theory offers the first complete treatment of all the fundamental methods and algorithms in CGT presented at a level accessible even to advanced undergraduate students. It develops the theory of algorithms in full detail and highlights the connections between the different aspects of CGT and other areas of computer algebra. While acknowledging the importance of the complexity analysis of CGT algorithms, the authors' primary focus is on algorithms that perform well in practice rather than on those with the best theoretical complexity.

Throughout the book, applications of all the key topics and algorithms to areas both within and outside of mathematics demonstrate how CGT fits into the wider world of mathematics and science. The authors include detailed pseudocode for all of the fundamental algorithms, and provide detailed worked examples that bring the theorems and algorithms to life.

Arvustused

"This is a book I am very happy to have, both for the choice of content and the quality of exposition. Its subject is a very complete and up-to-date review of computational group theory. All together, the book contains of a huge amount of information. I think every mathematician will want this book on his shelf." -Mathematics of Computation

"It will be an indispensable source for any user in this field."

G. Kowol, in Monatshefte fur Math, 2007, Vol. 151, No. 3

Notation and displayed procedures xvi
A Historical Review of Computational Group Theory
1(8)
Background Material
9(52)
Fundamentals
9(8)
Definitions
9(2)
Subgroups
11(1)
Cyclic and dihedral groups
12(1)
Generators
13(1)
Examples --- permutation groups and matrix groups
13(1)
Normal subgroups and quotient groups
14(1)
Homomorphisms and the isomorphism theorems
15(2)
Group actions
17(9)
Definition and examples
17(2)
Orbits and stabilizers
19(1)
Conjugacy, normalizers, and centralizers
20(1)
Sylow's theorems
21(1)
Transitivity and primitivity
22(4)
Series
26(7)
Simple and characteristically simple groups
26(1)
Series
27(1)
The derived series and solvable groups
27(2)
Central series and nilpotent groups
29(2)
The socle of a finite group
31(1)
The Frattini subgroup of a group
32(1)
Presentations of groups
33(8)
Free groups
33(3)
Group presentations
36(2)
Presentations of group extensions
38(2)
Tietze transformations
40(1)
Presentations of subgroups
41(5)
Subgroup presentations on Schreier generators
41(3)
Subgroup presentations on a general generating set
44(2)
Abelian group presentations
46(2)
Representation theory, modules, extensions, derivations, and complements
48(8)
The terminology of representation theory
49(1)
Semidirect products, complements, derivations, and first cohomology groups
50(2)
Extensions of modules and the second cohomology group
52(2)
The actions of automorphisms on cohomology groups
54(2)
Field theory
56(5)
Field extensions and splitting fields
56(2)
Finite fields
58(1)
Conway polynomials
59(2)
Representing Groups on a Computer
61(16)
Representing groups on computers
61(6)
The fundamental representation types
61(1)
Computational situations
62(2)
Straight-line programs
64(1)
Black-box groups
65(2)
The use of random methods in CGT
67(5)
Randomized algorithms
67(2)
Finding random elements of groups
69(3)
Some structural calculations
72(2)
Powers and orders of elements
72(1)
Normal closure
73(1)
The commutator subgroup, derived series, and lower central series
73(1)
Computing with homomorphisms
74(3)
Defining and verifying group homomorphisms
74(1)
Desirable facilities
75(2)
Computation in Finite Permutation Groups
77(72)
The calculation of orbits and stabilizers
77(4)
Schreier vectors
79(2)
Testing for Alt(Ω) and Sym(Ω)
81(1)
Finding block systems
82(5)
Introduction
82(1)
The Atkinson algorithm
83(2)
Implementation of the class merging process
85(2)
Bases and strong generating sets
87(18)
Definitions
87(3)
The Schreier-Sims algorithm
90(3)
Complexity and implementation issues
93(2)
Modifying the strong generating set --- shallow Schreier trees
95(2)
The random Schreier-Sims method
97(1)
The solvable BSGS algorithm
98(4)
Change of base
102(3)
Homomorphisms from permutation groups
105(3)
The induced action on a union of orbits
105(1)
The induced action on a block system
106(1)
Homomorphisms between permutation groups
107(1)
Backtrack searches
108(24)
Searching through the elements of a group
110(3)
Pruning the tree
113(1)
Searching for subgroups and coset representatives
114(4)
Automorphism groups of combinatorial structures and partitions
118(3)
Normalizers and centralizers
121(3)
Intersections of subgroups
124(2)
Transversals and actions on cosets
126(5)
Finding double coset representatives
131(1)
Sylow subgroups, p-cores, and the solvable radical
132(11)
Reductions involving intransitivity and imprimitivity
133(1)
Computing Sylow subgroups
134(3)
A result on quotient groups of permutation groups
137(1)
Computing the p-core
138(2)
Computing the solvable radical
140(1)
Nonabelian regular normal subgroups
141(2)
Applications
143(6)
Card shuffling
144(1)
Graphs, block designs, and error-correcting codes
145(2)
Diameters of Cayley graphs
147(1)
Processor interconnection networks
148(1)
Coset Enumeration
149(50)
The basic procedure
150(12)
Coset tables and their properties
151(1)
Defining and scanning
152(4)
Coincidences
156(6)
Strategies for coset enumeration
162(11)
The relator-based method
162(3)
The coset table-based method
165(2)
Compression and standardization
167(1)
Recent developments and examples
168(2)
Implementation issues
170(1)
The use of coset enumeration in practice
171(2)
Presentations of subgroups
173(15)
Computing a presentation on Schreier generators
173(5)
Computing a presentation on the user generators
178(6)
Simplifying presentations
184(4)
Finding all subgroups up to a given index
188(10)
Coset tables for a group presentation
189(1)
Details of the procedure
190(6)
Variations and improvements
196(2)
Applications
198(1)
Presentations of Given Groups
199(20)
Finding a presentation of a given group
199(6)
Finding a presentation on a set of strong generators
205(3)
The known BSGS case
205(2)
The Todd-Coxeter-Schreier-Sims algorithm
207(1)
The Sims `Verify' algorithm
208(11)
The single-generator case
209(4)
The general case
213(4)
Examples
217(2)
Representation Theory, Cohomology, and Characters
219(54)
Computation in finite fields
220(1)
Elementary computational linear algebra
221(5)
Factorizing polynomials over finite fields
226(4)
Reduction to the squarefree case
228(1)
Reduction to constant-degree irreducibles
229(1)
The constant-degree case
229(1)
Testing KG-modules for irreducibility --- the Meataxe
230(7)
The Meataxe algorithm
230(4)
Proof of correctness
234(1)
The Ivanyos-Lux extension
235(1)
Actions on submodules and quotient modules
235(1)
Applications
236(1)
Related computations
237(11)
Testing modules for absolute irreducibility
237(4)
Finding module homomorphisms
241(3)
Testing irreducible modules for isomorphism
244(1)
Application --- invariant bilinear forms
245(1)
Finding all irreducible representations over a finite field
246(2)
Cohomology
248(7)
Computing first cohomology groups
249(4)
Deciding whether an extension splits
253(1)
Computing second cohomology groups
254(1)
Computing character tables
255(9)
The basic method
256(1)
Working modulo a prime
257(3)
Further improvements
260(4)
Structural investigation of matrix groups
264(9)
Methods based on bases and strong generating sets
264(4)
Computing in large-degree matrix groups
268(5)
Computation with Polycyclic Groups
273(52)
Polycyclic presentations
274(12)
Polycyclic sequences
274(4)
Polycyclic presentations and consistency
278(2)
The collection algorithm
280(4)
Changing the presentation
284(2)
Examples of polycyclic groups
286(4)
Abelian, nilpotent, and supersolvable groups
286(2)
Infinite polycyclic groups and number fields
288(1)
Application --- crystallographic groups
289(1)
Subgroups and membership testing
290(8)
Induced polycyclic sequences
291(5)
Canonical polycyclic sequences
296(2)
Factor groups and homomorphisms
298(2)
Factor groups
298(1)
Homomorphisms
299(1)
Subgroup series
300(2)
Orbit-stabilizer methods
302(2)
Complements and extensions
304(7)
Complements and the first cohomology group
304(3)
Extensions and the second cohomology group
307(4)
Intersections, centralizers, and normalizers
311(6)
Intersections
311(2)
Centralizers
313(1)
Normalizers
314(2)
Conjugacy problems and conjugacy classes
316(1)
Automorphism groups
317(3)
The structure of finite solvable groups
320(5)
Sylow and Hall subgroups
320(2)
Maximal subgroups
322(3)
Computing Quotients of Finitely Presented Groups
325(50)
Finite quotients and automorphism groups of finite groups
326(9)
Description of the algorithm
326(6)
Performance issues
332(1)
Automorphism groups of finite groups
333(2)
Abelian quotients
335(12)
The linear algebra of a free abelian group
335(1)
Elementary row operations
336(1)
The Hermite normal form
337(4)
Elementary column matrices and the Smith normal form
341(6)
Practical computation of the HNF and SNF
347(6)
Modular techniques
347(2)
The use of norms and row reduction techniques
349(3)
Applications
352(1)
p-quotients of finitely presented groups
353(22)
Power-conjugate presentations
353(2)
The p-quotient algorithm
355(9)
Other quotient algorithms
364(1)
Generating descriptions of p-groups
364(7)
Testing finite p-groups for isomorphism
371(1)
Automorphism groups of finite p-groups
371(1)
Applications
372(3)
Advanced Computations in Finite Groups
375(18)
Some useful subgroups
376(5)
Definition of the subgroups
376(1)
Computing the subgroups --- initial reductions
377(1)
The O'Nan-Scott theorem
378(1)
Finding the socle factors -- the primitive case
379(2)
Computing composition and chief series
381(2)
Refining abelian sections
381(1)
Identifying the composition factors
382(1)
Applications of the solvable radical method
383(2)
Computing the subgroups of a finite group
385(5)
Identifying the TF-factor
386(1)
Lifting subgroups to the next layer
387(3)
Application -- enumerating finite unlabelled structures
390(3)
Libraries and Databases
393(18)
Primitive permutation groups
394(3)
Affine primitive permutation groups
395(1)
Nonaffine primitive permutation groups
396(1)
Transitive permutation groups
397(3)
Summary of the method
397(2)
Applications
399(1)
Perfect groups
400(2)
The small groups library
402(5)
The Frattini extension method
404(1)
A random isomorphism test
405(2)
Crystallographic groups
407(2)
The ``Atlas of Finite Groups''
409(2)
Rewriting Systems and the Knuth-Bendix Completion Process
411(22)
Monoid presentations
412(5)
Monoids and semigroups
412(3)
Free monoids and monoid presentations
415(2)
Rewriting systems
417(6)
Rewriting systems in monoids and groups
423(3)
Rewriting systems for polycyclic groups
426(3)
Verifying nilpotency
429(2)
Applications
431(2)
Finite State Automata and Automatic Groups
433(38)
Finite state automata
434(17)
Definitions and examples
434(3)
Enumerating and counting the language of a dfa
437(2)
The use of fsa in rewriting systems
439(2)
Word-acceptors
441(1)
2-variable fsa
442(1)
Operations on finite state automata
442(1)
Making an fsa deterministic
443(1)
Minimizing an fsa
444(2)
Testing for language equality
446(1)
Negation, union, and intersection
447(1)
Concatenation and star
447(1)
Existential quantification
448(3)
Automatic groups
451(5)
Definitions, examples, and background
451(2)
Word-differences and word-difference automata
453(3)
The algorithm to compute the shortlex automatic structures
456(12)
Step 1
457(2)
Step 2 and word reduction
459(1)
Step 3
460(2)
Step 4
462(2)
Step 5
464(2)
Comments on the implementation and examples
466(2)
Related algorithms
468(1)
Applications
469(2)
References 471(26)
Index of Displayed Procedures 497(2)
Author Index 499(4)
Subject Index 503


Derek F. Holt, Bettina Eick, Eamonn A. O'Brien