|
|
|
1 History of finite fields |
|
|
3 | (10) |
|
1.1 Finite fields in the 18-th and 19-th centuries |
|
|
3 | (10) |
|
|
|
3 | (1) |
|
1.1.2 Early anticipations of finite fields |
|
|
4 | (1) |
|
1.1.3 Gauss's Disquisitiones Arithmeticae |
|
|
4 | (1) |
|
1.1.4 Gauss's Disquisitiones Generales de Congruentiis |
|
|
5 | (1) |
|
1.1.5 Galois's Sur la theorie des nombres |
|
|
6 | (2) |
|
1.1.6 Serret's Cours d'Algebre superieure |
|
|
8 | (1) |
|
1.1.7 Contributions of Schonemann and Dedekind |
|
|
9 | (1) |
|
1.1.8 Moore's characterization of abstract finite fields |
|
|
10 | (1) |
|
|
10 | (3) |
|
2 Introduction to finite fields |
|
|
13 | (40) |
|
2.1 Basic properties of finite fields |
|
|
13 | (19) |
|
|
|
|
13 | (1) |
|
2.1.2 Fundamental properties of finite fields |
|
|
14 | (4) |
|
|
18 | (2) |
|
2.1.4 Trace and norm functions |
|
|
20 | (1) |
|
|
21 | (2) |
|
2.1.6 Linearized polynomials |
|
|
23 | (1) |
|
2.1.7 Miscellaneous results |
|
|
23 | (1) |
|
2.1.7.1 The finite field polynomial Φ function |
|
|
24 | (1) |
|
2.1.7.2 Cyclotomic polynomials |
|
|
24 | (2) |
|
2.1.7.3 Lagrange interpolation |
|
|
26 | (1) |
|
|
26 | (1) |
|
2.1.7.5 Jacobi logarithms |
|
|
27 | (1) |
|
2.1.7.6 Field-like structures |
|
|
27 | (1) |
|
|
28 | (3) |
|
2.1.8 Finite field related books |
|
|
31 | (1) |
|
|
31 | (1) |
|
2.1.8.2 Finite field theory |
|
|
31 | (1) |
|
|
31 | (1) |
|
|
31 | (1) |
|
2.1.8.5 Conference proceedings |
|
|
31 | (1) |
|
|
32 | (21) |
|
2.2.1 Low-weight irreducible and primitive polynomials |
|
|
32 | (5) |
|
2.2.2 Low-complexity normal bases |
|
|
37 | (1) |
|
2.2.2.1 Exhaustive search for low complexity normal bases |
|
|
38 | (2) |
|
2.2.2.2 Minimum type of a Gauss period admitting a normal basis of F2n, over F2 |
|
|
40 | (1) |
|
2.2.2.3 Minimum-known complexity of a normal basis of F2n over F2, n ≥40 |
|
|
41 | (5) |
|
2.2.3 Resources and standards |
|
|
46 | (7) |
|
Part II Theoretical Properties |
|
|
|
3 Irreducible polynomials |
|
|
53 | (34) |
|
3.1 Counting irreducible polynomials |
|
|
53 | (7) |
|
|
3.1.1 Prescribed trace or norm |
|
|
54 | (1) |
|
3.1.2 Prescribed coefficients over the binary field |
|
|
55 | (1) |
|
3.1.3 Self-reciprocal polynomials |
|
|
56 | (1) |
|
3.1.4 Compositions of powers |
|
|
57 | (1) |
|
3.1.5 Translation invariant polynomials |
|
|
58 | (1) |
|
|
58 | (2) |
|
3.2 Construction of irreducibles |
|
|
60 | (6) |
|
|
3.2.1 Construction by composition |
|
|
60 | (3) |
|
3.2.2 Recursive constructions |
|
|
63 | (3) |
|
3.3 Conditions for reducible polynomials |
|
|
66 | (4) |
|
|
3.3.1 Composite polynomials |
|
|
66 | (1) |
|
|
67 | (3) |
|
3.4 Weights of irreducible polynomials |
|
|
70 | (3) |
|
|
|
70 | (1) |
|
|
70 | (2) |
|
|
72 | (1) |
|
3.5 Prescribed coefficients |
|
|
73 | (7) |
|
|
3.5.1 One prescribed coefficient |
|
|
74 | (1) |
|
3.5.2 Prescribed trace and norm |
|
|
75 | (1) |
|
3.5.3 More prescribed coefficients |
|
|
76 | (2) |
|
3.5.4 Further exact expressions |
|
|
78 | (2) |
|
3.6 Multivariate polynomials |
|
|
80 | (7) |
|
|
|
80 | (1) |
|
3.6.2 Asymptotic formulas |
|
|
81 | (1) |
|
3.6.3 Results for the vector degree |
|
|
81 | (2) |
|
3.6.4 Indecomposable polynomials and irreducible polynomials |
|
|
83 | (1) |
|
3.6.5 Algorithms for the gcd of multivariate polynomials |
|
|
84 | (3) |
|
|
87 | (14) |
|
4.1 Introduction to primitive polynomials |
|
|
87 | (3) |
|
|
|
4.2 Prescribed coefficients |
|
|
90 | (5) |
|
|
4.2.1 Approaches to results on prescribed coefficients |
|
|
91 | (1) |
|
4.2.2 Existence theorems for primitive polynomials |
|
|
92 | (1) |
|
4.2.3 Existence theorems for primitive normal polynomials |
|
|
93 | (2) |
|
4.3 Weights of primitive polynomials |
|
|
95 | (3) |
|
|
4.4 Elements of high order |
|
|
98 | (3) |
|
|
4.4.1 Elements of high order from elements of small orders |
|
|
98 | (1) |
|
4.4.2 Gao's construction and a generalization |
|
|
98 | (1) |
|
4.4.3 Iterative constructions |
|
|
99 | (2) |
|
|
101 | (38) |
|
5.1 Duality theory of bases |
|
|
101 | (8) |
|
|
|
101 | (2) |
|
|
103 | (1) |
|
5.1.3 Weakly self-dual bases |
|
|
104 | (2) |
|
5.1.4 Binary bases with small excess |
|
|
106 | (1) |
|
5.1.5 Almost weakly self-dual bases |
|
|
107 | (2) |
|
5.1.6 Connections to hardware design |
|
|
109 | (1) |
|
|
109 | (8) |
|
|
|
5.2.1 Basics on normal bases |
|
|
110 | (4) |
|
5.2.2 Self-dual normal bases |
|
|
114 | (1) |
|
5.2.3 Primitive normal bases |
|
|
115 | (2) |
|
5.3 Complexity of normal bases |
|
|
117 | (11) |
|
|
|
5.3.1 Optimal and low complexity normal bases |
|
|
117 | (3) |
|
|
120 | (1) |
|
5.3.3 Normal bases from elliptic periods |
|
|
121 | (2) |
|
5.3.4 Complexities of dual and self-dual normal bases |
|
|
123 | (2) |
|
5.3.4.1 Duals of Gauss periods |
|
|
125 | (1) |
|
5.3.5 Fast arithmetic using normal bases |
|
|
125 | (3) |
|
5.4 Completely normal bases |
|
|
128 | (11) |
|
|
5.4.1 The complete normal basis theorem |
|
|
128 | (2) |
|
5.4.2 The class of completely basic extensions |
|
|
130 | (1) |
|
5.4.3 Cyclotomic modules and complete generators |
|
|
131 | (2) |
|
5.4.4 A decomposition theory for complete generators |
|
|
133 | (1) |
|
5.4.5 The class of regular extensions |
|
|
134 | (1) |
|
5.4.6 Complete generators for regular cyclotomic modules |
|
|
135 | (2) |
|
5.4.7 Towards a primitive complete normal basis theorem |
|
|
137 | (2) |
|
6 Exponential and character sums |
|
|
139 | (54) |
|
6.1 Gauss, Jacobi, and Kloosterman sums |
|
|
139 | (22) |
|
|
6.1.1 Properties of Gauss and Jacobi sums of general order |
|
|
139 | (9) |
|
6.1.2 Evaluations of Jacobi and Gauss sums of small orders |
|
|
148 | (3) |
|
6.1.3 Prime ideal divisors of Gauss and Jacobi sums |
|
|
151 | (3) |
|
|
154 | (5) |
|
6.1.5 Gauss and Kloosterman sums over finite rings |
|
|
159 | (2) |
|
6.2 More general exponential and character sums |
|
|
161 | (9) |
|
|
6.2.1 One variable character sums |
|
|
161 | (1) |
|
6.2.2 Additive character sums |
|
|
162 | (4) |
|
6.2.3 Multiplicative character sums |
|
|
166 | (1) |
|
|
167 | (1) |
|
6.2.5 More general types of character sums |
|
|
168 | (2) |
|
6.3 Some applications of character sums |
|
|
170 | (15) |
|
|
|
6.3.1 Applications of a simple character sum identity |
|
|
170 | (1) |
|
6.3.1.1 Hadamard matrices |
|
|
170 | (1) |
|
6.3.1.2 Cyclotomic complete mappings and check digit systems |
|
|
171 | (1) |
|
6.3.1.3 Periodic autocorrelation of cyclotomic generators |
|
|
172 | (1) |
|
6.3.2 Applications of Gauss and Jacobi sums |
|
|
172 | (1) |
|
|
173 | (1) |
|
6.3.2.2 Distribution of linear congruential pseudorandom numbers |
|
|
174 | (1) |
|
6.3.2.3 Diagonal equations, Waring's problem in finite fields, and covering radius of certain cyclic codes |
|
|
175 | (1) |
|
6.3.2.4 Hidden number problem and noisy interpolation |
|
|
176 | (1) |
|
6.3.3 Applications of the Weil bound |
|
|
176 | (1) |
|
6.3.3.1 Superelliptic and Artin-Schreier equations |
|
|
177 | (1) |
|
6.3.3.2 Stable quadratic polynomials |
|
|
177 | (1) |
|
6.3.3.3 Hamming distance of dual BCH codes |
|
|
178 | (1) |
|
6.3.4 Applications of Kloosterman sums |
|
|
179 | (1) |
|
6.3.4.1 Kloosterman equations and Kloosterman codes |
|
|
179 | (1) |
|
6.3.4.2 Distribution of inversive congruential pseudorandom numbers |
|
|
180 | (1) |
|
6.3.4.3 Nonlinearity of Boolean functions |
|
|
180 | (1) |
|
6.3.5 Incomplete character sums |
|
|
181 | (1) |
|
6.3.5.1 Finding deterministically linear factors of polynomials |
|
|
181 | (1) |
|
6.3.5.2 Measures of pseudorandomness |
|
|
182 | (1) |
|
6.3.6 Other character sums |
|
|
183 | (1) |
|
6.3.6.1 Distribution of primitive elements and powers |
|
|
183 | (1) |
|
6.3.6.2 Distribution of Diffie-Hellman triples |
|
|
183 | (1) |
|
6.3.6.3 Thin sets with small discrete Fourier transform |
|
|
184 | (1) |
|
6.3.6.4 Character sums over arbitrary sets |
|
|
184 | (1) |
|
6.4 Sum-product theorems and applications |
|
|
185 | (8) |
|
|
|
185 | (1) |
|
6.4.2 The sum-product estimate and its variants |
|
|
186 | (2) |
|
|
188 | (5) |
|
7 Equations over finite fields |
|
|
193 | (22) |
|
|
193 | (8) |
|
|
7.1.1 Affine hypersurfaces |
|
|
193 | (2) |
|
7.1.2 Projective hypersurfaces |
|
|
195 | (1) |
|
7.1.3 Toric hypersurfaces |
|
|
196 | (1) |
|
7.1.4 Artin-Schreier hypersurfaces |
|
|
197 | (1) |
|
7.1.5 Kummer hypersurfaces |
|
|
198 | (1) |
|
|
199 | (2) |
|
|
201 | (5) |
|
|
|
201 | (1) |
|
7.2.2 Quadratic forms over finite fields |
|
|
202 | (2) |
|
|
204 | (1) |
|
|
205 | (1) |
|
|
206 | (9) |
|
|
|
|
206 | (1) |
|
7.3.2 Solutions of diagonal equations |
|
|
207 | (3) |
|
7.3.3 Generalizations of diagonal equations |
|
|
210 | (1) |
|
7.3.4 Waring's problem in finite fields |
|
|
211 | (4) |
|
8 Permutation polynomials |
|
|
215 | (26) |
|
|
215 | (15) |
|
|
|
|
215 | (1) |
|
|
216 | (1) |
|
8.1.3 Enumeration and distribution of PPs |
|
|
217 | (3) |
|
8.1.4 Constructions of PPs |
|
|
220 | (1) |
|
8.1.5 PPs from permutations of multiplicative groups |
|
|
221 | (3) |
|
8.1.6 PPs from permutations of additive groups |
|
|
224 | (1) |
|
8.1.7 Other types of PPs from the AGW criterion |
|
|
224 | (2) |
|
8.1.8 Dickson and reversed Dickson PPs |
|
|
226 | (2) |
|
|
228 | (2) |
|
|
230 | (2) |
|
|
|
8.3 Value sets of polynomials |
|
|
232 | (4) |
|
|
|
|
233 | (1) |
|
|
233 | (1) |
|
8.3.3 General polynomials |
|
|
234 | (1) |
|
|
234 | (1) |
|
|
235 | (1) |
|
8.3.6 Further value set papers |
|
|
235 | (1) |
|
8.4 Exceptional polynomials |
|
|
236 | (5) |
|
|
8.4.1 Fundamental properties |
|
|
236 | (1) |
|
8.4.2 Indecomposable exceptional polynomials |
|
|
237 | (1) |
|
8.4.3 Exceptional polynomials and permutation polynomials |
|
|
238 | (1) |
|
|
238 | (1) |
|
|
239 | (2) |
|
9 Special functions over finite fields |
|
|
241 | (62) |
|
|
241 | (12) |
|
|
9.1.1 Representation of Boolean functions |
|
|
242 | (1) |
|
9.1.1.1 Algebraic normal form |
|
|
242 | (1) |
|
9.1.1.2 Trace representation |
|
|
243 | (1) |
|
9.1.2 The Walsh transform |
|
|
244 | (1) |
|
9.1.3 Parameters of Boolean functions |
|
|
244 | (2) |
|
9.1.4 Equivalence of Boolean functions |
|
|
246 | (1) |
|
9.1.5 Boolean functions and cryptography |
|
|
246 | (3) |
|
9.1.6 Constructions of cryptographic Boolean functions |
|
|
249 | (1) |
|
9.1.6.1 Primary constructions of resilient functions |
|
|
249 | (1) |
|
9.1.6.2 Secondary constructions of resilient functions |
|
|
249 | (1) |
|
9.1.6.3 Constructions of highly nonlinear functions with optimal algebraic immunity |
|
|
250 | (1) |
|
9.1.7 Boolean functions and error correcting codes |
|
|
251 | (1) |
|
9.1.7.1 Reed-Muller codes |
|
|
251 | (1) |
|
|
251 | (1) |
|
9.1.8 Boolean functions and sequences |
|
|
251 | (1) |
|
9.1.8.1 Boolean functions and cross correlation of m-sequences |
|
|
252 | (1) |
|
|
253 | (9) |
|
|
9.2.1 Functions from F2n into F2m |
|
|
253 | (1) |
|
9.2.2 Perfect Nonlinear (PN) functions |
|
|
254 | (1) |
|
9.2.3 Almost Perfect Nonlinear (APN) and Almost Bent (AB) functions |
|
|
255 | (1) |
|
|
256 | (1) |
|
9.2.5 Properties of stability |
|
|
257 | (1) |
|
9.2.6 Coding theory point of view |
|
|
258 | (1) |
|
9.2.7 Quadratic APN functions |
|
|
258 | (2) |
|
|
260 | (2) |
|
9.3 Bent and related functions |
|
|
262 | (11) |
|
|
|
9.3.1 Definitions and examples |
|
|
262 | (2) |
|
9.3.2 Basic properties of bent functions |
|
|
264 | (1) |
|
9.3.3 Bent functions and other combinatorial objects |
|
|
265 | (1) |
|
9.3.4 Fundamental classes of bent functions |
|
|
266 | (2) |
|
9.3.5 Boolean monomial and Niho bent functions |
|
|
268 | (2) |
|
9.3.6 p-ary bent functions in univariate form |
|
|
270 | (1) |
|
9.3.7 Constructions using planar and s-plateaued functions |
|
|
271 | (1) |
|
9.3.8 Vectorial bent functions and Kerdock codes |
|
|
272 | (1) |
|
9.4 κ-polynomials and related algebraic objects |
|
|
273 | (5) |
|
|
9.4.1 Definitions and preliminaries |
|
|
273 | (2) |
|
9.4.2 Pre-semifields, semifields, and isotopy |
|
|
275 | (1) |
|
9.4.3 Semifield constructions |
|
|
275 | (1) |
|
9.4.4 Semifields and nuclei |
|
|
276 | (2) |
|
9.5 Planar functions and commutative semifields |
|
|
278 | (4) |
|
|
9.5.1 Definitions and preliminaries |
|
|
278 | (1) |
|
9.5.2 Constructing affine planes using planar functions |
|
|
279 | (1) |
|
9.5.3 Examples, constructions, and equivalence |
|
|
279 | (1) |
|
9.5.4 Classification results, necessary conditions, and the Dembowski-Ostrom Conjecture |
|
|
280 | (1) |
|
9.5.5 Planar DO polynomials and commutative semifields of odd order |
|
|
281 | (1) |
|
9.6 Dickson polynomials Qiang Wang and Joseph L. Yucas |
|
|
282 | (8) |
|
|
282 | (2) |
|
|
284 | (1) |
|
9.6.2.1 a-reciprocals of polynomials |
|
|
285 | (1) |
|
9.6.2.2 The maps φa and Ψa |
|
|
286 | (1) |
|
9.6.2.3 Factors of Dickson polynomials |
|
|
286 | (1) |
|
9.6.2.4 a-cyclotomic polynomials |
|
|
287 | (1) |
|
9.6.3 Dickson polynomials of the (κ + 1)-th kind |
|
|
287 | (2) |
|
9.6.4 Multivariate Dickson polynomials |
|
|
289 | (1) |
|
9.7 Schur's conjecture and exceptional covers |
|
|
290 | (13) |
|
|
9.7.1 Rational function definitions |
|
|
290 | (2) |
|
9.7.2 MacCluer's Theorem and Schur's Conjecture |
|
|
292 | (3) |
|
9.7.3 Fiber product of covers |
|
|
295 | (1) |
|
9.7.4 Combining exceptional covers; the (Fq, Z) exceptional tower |
|
|
296 | (2) |
|
9.7.5 Exceptional rational functions; Serre's Open Image Theorem |
|
|
298 | (2) |
|
9.7.6 Davenport pairs and Poincare series |
|
|
300 | (3) |
|
10 Sequences over finite fields |
|
|
303 | (42) |
|
10.1 Finite field transforms |
|
|
303 | (8) |
|
|
10.1.1 Basic definitions and important examples |
|
|
303 | (3) |
|
10.1.2 Functions between two groups |
|
|
306 | (1) |
|
10.1.3 Discrete Fourier Transform |
|
|
307 | (1) |
|
|
308 | (1) |
|
10.1.4.1 Fourier spectrum |
|
|
309 | (1) |
|
|
309 | (1) |
|
10.1.4.3 Characteristic functions |
|
|
309 | (1) |
|
|
310 | (1) |
|
10.1.4.5 Uncertainty principle |
|
|
310 | (1) |
|
10.2 LFSR sequences and maximal period sequences |
|
|
311 | (6) |
|
|
10.2.1 General properties of LFSR sequences |
|
|
311 | (2) |
|
10.2.2 Operations with LFSR sequences and characterizations |
|
|
313 | (2) |
|
10.2.3 Maximal period sequences |
|
|
315 | (1) |
|
10.2.4 Distribution properties of LFSR sequences |
|
|
315 | (1) |
|
10.2.5 Applications of LFSR sequences |
|
|
316 | (1) |
|
10.3 Correlation and autocorrelation of sequences |
|
|
317 | (7) |
|
|
|
317 | (1) |
|
10.3.2 Autocorrelation of sequences |
|
|
318 | (1) |
|
10.3.3 Sequence families with low correlation |
|
|
319 | (2) |
|
10.3.4 Quaternary sequences |
|
|
321 | (1) |
|
10.3.5 Other correlation measures |
|
|
322 | (2) |
|
10.4 Linear complexity of sequences and multisequences |
|
|
324 | (13) |
|
|
|
10.4.1 Linear complexity measures |
|
|
324 | (3) |
|
10.4.2 Analysis of the linear complexity |
|
|
327 | (2) |
|
10.4.3 Average behavior of the linear complexity |
|
|
329 | (2) |
|
10.4.4 Some sequences with large n-th linear complexity |
|
|
331 | (1) |
|
10.4.4.1 Explicit sequences |
|
|
331 | (1) |
|
10.4.4.2 Recursive nonlinear sequences |
|
|
332 | (1) |
|
10.4.4.3 Legendre sequence and related bit sequences |
|
|
333 | (1) |
|
10.4.4.4 Elliptic curve sequences |
|
|
334 | (1) |
|
|
334 | (1) |
|
10.4.5.1 Kolmogorov complexity |
|
|
334 | (1) |
|
|
335 | (1) |
|
10.4.5.3 Correlation measure of order κ |
|
|
335 | (1) |
|
10.4.5.4 FCSR and p-adic span |
|
|
335 | (1) |
|
|
336 | (1) |
|
10.5 Algebraic dynamical systems over finite fields |
|
|
337 | (8) |
|
|
|
337 | (1) |
|
10.5.2 Background and main definitions |
|
|
337 | (1) |
|
|
338 | (2) |
|
10.5.4 Linear independence and other algebraic properties of iterates |
|
|
340 | (1) |
|
10.5.5 Multiplicative independence of iterates |
|
|
341 | (1) |
|
|
341 | (1) |
|
10.5.7 Irreducibility of iterates |
|
|
342 | (1) |
|
10.5.8 Diameter of partial trajectories |
|
|
343 | (2) |
|
|
345 | (60) |
|
11.1 Computational techniques |
|
|
345 | (19) |
|
|
|
346 | (1) |
|
11.1.1.1 Prime field generation |
|
|
346 | (1) |
|
11.1.1.2 Extension field generation |
|
|
347 | (2) |
|
11.1.1.3 Primitive elements |
|
|
349 | (1) |
|
11.1.1.4 Order of an irreducible polynomial and primitive polynomials |
|
|
349 | (1) |
|
11.1.1.5 Minimal polynomial of an element |
|
|
350 | (1) |
|
11.1.2 Representation of finite fields |
|
|
350 | (1) |
|
|
351 | (1) |
|
|
351 | (2) |
|
11.1.3.2 Extension fields |
|
|
353 | (1) |
|
|
354 | (1) |
|
|
354 | (1) |
|
|
354 | (1) |
|
11.1.5.2 Extension fields |
|
|
355 | (1) |
|
|
356 | (1) |
|
11.1.6.1 Finite fields of odd characteristic |
|
|
356 | (1) |
|
11.1.6.2 Finite fields of characteristic two |
|
|
356 | (1) |
|
|
356 | (1) |
|
|
356 | (1) |
|
11.1.7.2 Extension fields |
|
|
357 | (1) |
|
|
358 | (1) |
|
|
359 | (1) |
|
11.1.8.2 Extension fields |
|
|
360 | (1) |
|
11.1.9 Squares and square roots |
|
|
360 | (1) |
|
11.1.9.1 Finite fields of odd characteristic |
|
|
361 | (2) |
|
11.1.9.2 Finite fields of even characteristic |
|
|
363 | (1) |
|
11.2 Univariate polynomial counting and algorithms |
|
|
364 | (10) |
|
|
11.2.1 Classical counting results |
|
|
364 | (1) |
|
11.2.2 Analytic combinatorics approach |
|
|
365 | (2) |
|
11.2.3 Some illustrations of polynomial counting |
|
|
367 | (1) |
|
11.2.3.1 Number of irreducible factors of a polynomial |
|
|
367 | (1) |
|
11.2.3.2 Factorization patterns |
|
|
368 | (1) |
|
11.2.3.3 Largest and smallest degree irreducibles |
|
|
369 | (2) |
|
11.2.3.4 Greatest common divisor of polynomials |
|
|
371 | (1) |
|
11.2.3.5 Relations to permutations and integers |
|
|
372 | (2) |
|
11.3 Algorithms for irreducibility testing and for constructing irreducible polynomials |
|
|
374 | (6) |
|
|
|
374 | (1) |
|
11.3.2 Early irreducibility tests of univariate polynomials |
|
|
375 | (1) |
|
11.3.3 Rabin's irreducibility test |
|
|
376 | (1) |
|
11.3.4 Constructing irreducible polynomials: randomized algorithms |
|
|
377 | (1) |
|
11.3.5 Ben-Or's algorithm for construction of irreducible polynomials |
|
|
377 | (1) |
|
11.3.6 Shoup's algorithm for construction of irreducible polynomials |
|
|
378 | (1) |
|
11.3.7 Constructing irreducible polynomials: deterministic algorithms |
|
|
378 | (1) |
|
11.3.8 Construction of irreducible polynomials of approximate degree |
|
|
379 | (1) |
|
11.4 Factorization of univariate polynomials |
|
|
380 | (2) |
|
|
11.5 Factorization of multivariate polynomials |
|
|
382 | (11) |
|
|
|
11.5.1 Factoring dense multivariate polynomials |
|
|
382 | (1) |
|
11.5.1.1 Separable factorization |
|
|
382 | (2) |
|
11.5.1.2 Squarefree factorization |
|
|
384 | (1) |
|
11.5.1.3 Bivariate irreducible factorization |
|
|
384 | (2) |
|
11.5.1.4 Reduction from any number to two variables |
|
|
386 | (1) |
|
11.5.2 Factoring sparse multivariate polynomials |
|
|
387 | (1) |
|
11.5.2.1 Ostrowski's theorem |
|
|
388 | (1) |
|
11.5.2.2 Irreducibility tests based on indecomposability of polytopes |
|
|
388 | (1) |
|
11.5.2.3 Sparse bivariate Hensel lifting driven by polytopes |
|
|
388 | (1) |
|
11.5.2.4 Convex-dense bivariate factorization |
|
|
389 | (1) |
|
11.5.3 Factoring straight-line programs and black boxes |
|
|
390 | (3) |
|
11.6 Discrete logarithms over finite fields |
|
|
393 | (8) |
|
|
|
393 | (1) |
|
11.6.2 Modern computer implementations |
|
|
394 | (1) |
|
11.6.3 Historical remarks |
|
|
394 | (1) |
|
11.6.4 Basic properties of discrete logarithms |
|
|
395 | (1) |
|
11.6.5 Chinese Remainder Theorem reduction: The Silver-Pohlig-Hellman algorithm |
|
|
395 | (1) |
|
11.6.6 Baby steps-giant steps algorithm |
|
|
396 | (1) |
|
11.6.7 Pollard rho and kangaroo methods for discrete logarithms |
|
|
397 | (1) |
|
11.6.8 Index calculus algorithms for discrete logarithms in finite fields |
|
|
397 | (2) |
|
11.6.9 Smooth integers and smooth polynomials |
|
|
399 | (1) |
|
11.6.10 Sparse linear systems of equations |
|
|
399 | (1) |
|
11.6.11 Current discrete logarithm records |
|
|
400 | (1) |
|
11.7 Standard models for finite fields Bart de Smit and Hendrik Lenstra |
|
|
401 | (4) |
|
12 Curves over finite fields |
|
|
405 | (88) |
|
12.1 Introduction to function fields and curves |
|
|
406 | (16) |
|
|
|
12.1.1 Valuations and places |
|
|
406 | (3) |
|
12.1.2 Divisors and Riemann-Roch theorem |
|
|
409 | (4) |
|
12.1.3 Extensions of function fields |
|
|
413 | (6) |
|
|
419 | (2) |
|
12.1.5 Function fields and curves |
|
|
421 | (1) |
|
|
422 | (18) |
|
|
12.2.1 Weierstrass equations |
|
|
423 | (2) |
|
|
425 | (2) |
|
12.2.3 Isogenics and endomorphisms |
|
|
427 | (3) |
|
12.2.4 The number of points in E(q) |
|
|
430 | (1) |
|
|
431 | (1) |
|
12.2.6 The torsion subgroup and the Tate module |
|
|
432 | (1) |
|
12.2.7 The Weil pairing and the Tate pairing |
|
|
433 | (2) |
|
12.2.8 The endomorphism ring and automorphism group |
|
|
435 | (1) |
|
12.2.9 Ordinary and supersingular elliptic curves |
|
|
436 | (2) |
|
12.2.10 The zeta function of an elliptic curve |
|
|
438 | (1) |
|
12.2.11 The elliptic curve discrete logarithm problem |
|
|
439 | (1) |
|
12.3 Addition formulas for elliptic curves |
|
|
440 | (7) |
|
|
|
|
440 | (1) |
|
|
441 | (1) |
|
12.3.3 Coordinate systems |
|
|
442 | (1) |
|
|
443 | (1) |
|
12.3.5 Short Weierstrass curves, large characteristic: y2 = x3 - 3x + b |
|
|
444 | (1) |
|
12.3.6 Short Weierstrass curves, characteristic 2, ordinary case: y2 + xy = x3 + a2x2 +a6 |
|
|
444 | (1) |
|
12.3.7 Montgomery curves: by2 = x3 + ax2 +x |
|
|
445 | (1) |
|
12.3.8 Twisted Edwards curves: ax2 + y2 = 1 + dx2y2 |
|
|
446 | (1) |
|
12.4 Hyperelliptic curves |
|
|
447 | (9) |
|
Michael John Jacobson, Jr. |
|
|
|
12.4.1 Hyperelliptic equations |
|
|
447 | (2) |
|
12.4.2 The degree zero divisor class group |
|
|
449 | (1) |
|
12.4.3 Divisor class arithmetic over finite fields |
|
|
450 | (3) |
|
12.4.4 Endomorphisms and supersingularity |
|
|
453 | (1) |
|
12.4.5 Class number computation |
|
|
453 | (1) |
|
12.4.6 The Tate-Lichtenbaum pairing |
|
|
454 | (1) |
|
12.4.7 The hyperelliptic curve discrete logarithm problem |
|
|
455 | (1) |
|
12.5 Rational points on curves |
|
|
456 | (8) |
|
|
|
|
457 | (1) |
|
12.5.2 The Zeta function of a function field |
|
|
458 | (1) |
|
12.5.3 Bounds for the number of rational places |
|
|
459 | (2) |
|
12.5.4 Maximal function fields |
|
|
461 | (1) |
|
|
462 | (2) |
|
|
464 | (5) |
|
|
|
12.6.1 Introduction to towers |
|
|
464 | (2) |
|
12.6.2 Examples of towers |
|
|
466 | (3) |
|
12.7 Zeta functions and L-functions |
|
|
469 | (10) |
|
|
|
469 | (5) |
|
|
474 | (3) |
|
12.7.3 The case of curves |
|
|
477 | (2) |
|
12.8 p-adic estimates of zeta functions and L-functions |
|
|
479 | (9) |
|
|
|
479 | (1) |
|
12.8.2 Lower bounds for the first slope |
|
|
480 | (1) |
|
12.8.3 Uniform lower bounds for Newton polygons |
|
|
481 | (2) |
|
12.8.4 Variation of Newton polygons in a family |
|
|
483 | (2) |
|
12.8.5 The case of curves and abelian varieties |
|
|
485 | (3) |
|
12.9 Computing the number of rational points and zeta functions |
|
|
488 | (5) |
|
|
12.9.1 Point counting: sparse input |
|
|
488 | (1) |
|
12.9.2 Point counting: dense input |
|
|
489 | (1) |
|
12.9.3 Computing zeta functions: general case |
|
|
490 | (1) |
|
12.9.4 Computing zeta functions: curve case |
|
|
491 | (2) |
|
13 Miscellaneous theoretical topics |
|
|
493 | (56) |
|
13.1 Relations between integers and polynomials over finite fields |
|
|
493 | (7) |
|
|
13.1.1 The density of primes and irreducibles |
|
|
494 | (1) |
|
13.1.2 Primes and irreducibles in arithmetic progression |
|
|
495 | (1) |
|
13.1.3 Twin primes and irreducibles |
|
|
495 | (1) |
|
13.1.4 The generalized Riemann hypothesis |
|
|
496 | (1) |
|
13.1.5 The Goldbach problem over finite fields |
|
|
497 | (1) |
|
13.1.6 The Waring problem over finite fields |
|
|
498 | (2) |
|
13.2 Matrices over finite fields |
|
|
500 | (10) |
|
|
13.2.1 Matrices of specified rank |
|
|
500 | (1) |
|
13.2.2 Matrices of specified order |
|
|
501 | (2) |
|
13.2.3 Matrix representations of finite fields |
|
|
503 | (1) |
|
13.2.4 Circulant and orthogonal matrices |
|
|
504 | (2) |
|
13.2.5 Symmetric and skew-symmetric matrices |
|
|
506 | (1) |
|
13.2.6 Hankel and Toeplitz matrices |
|
|
507 | (2) |
|
|
509 | (1) |
|
13.3 Classical groups over finite fields |
|
|
510 | (10) |
|
|
13.3.1 Linear groups over finite fields |
|
|
510 | (2) |
|
13.3.2 Symplectic groups over finite fields |
|
|
512 | (2) |
|
13.3.3 Unitary groups over finite fields |
|
|
514 | (2) |
|
13.3.4 Orthogonal groups over finite fields of characteristic not two |
|
|
516 | (3) |
|
13.3.5 Orthogonal groups over finite fields of characteristic two |
|
|
519 | (1) |
|
13.4 Computational linear algebra over finite fields |
|
|
520 | (15) |
|
|
|
13.4.1 Dense matrix multiplication |
|
|
521 | (1) |
|
13.4.1.1 Tiny finite fields |
|
|
521 | (2) |
|
13.4.1.2 Word size prime fields |
|
|
523 | (1) |
|
13.4.1.3 Large finite fields |
|
|
524 | (1) |
|
13.4.1.4 Large matrices: subcubic time complexity |
|
|
524 | (1) |
|
13.4.2 Dense Gaussian elimination and echelon forms |
|
|
525 | (1) |
|
|
525 | (1) |
|
13.4.2.2 PLE decomposition |
|
|
526 | (1) |
|
|
527 | (1) |
|
13.4.3 Minimal and characteristic polynomial of a dense matrix |
|
|
528 | (2) |
|
13.4.4 Blackbox iterative methods |
|
|
530 | (1) |
|
13.4.4.1 Minimal polynomial and the Wiedemann algorithm |
|
|
530 | (1) |
|
13.4.4.2 Rank, determinant, and characteristic polynomial |
|
|
531 | (1) |
|
13.4.4.3 System solving and the Lanczos algorithm |
|
|
531 | (1) |
|
13.4.5 Sparse and structured methods |
|
|
532 | (1) |
|
|
532 | (1) |
|
13.4.5.2 Structured matrices and displacement rank |
|
|
532 | (2) |
|
|
534 | (1) |
|
13.4.6.1 Hybrid sparse-dense methods |
|
|
534 | (1) |
|
13.4.6.2 Block-iterative methods |
|
|
534 | (1) |
|
13.5 Carlitz and Drinfeld modules |
|
|
535 | (14) |
|
|
|
536 | (1) |
|
13.5.2 Drinfeld modules: definition and analytic theory |
|
|
537 | (2) |
|
13.5.3 Drinfeld modules over finite fields |
|
|
539 | (1) |
|
13.5.4 The reduction theory of Drinfeld modules |
|
|
539 | (1) |
|
13.5.5 The A-module of rational points |
|
|
540 | (1) |
|
13.5.6 The invariants of a Drinfeld module |
|
|
540 | (1) |
|
13.5.7 The L-series of a Drinfeld module |
|
|
541 | (1) |
|
|
542 | (1) |
|
13.5.9 Measures and symmetries |
|
|
542 | (2) |
|
|
544 | (1) |
|
|
544 | (1) |
|
13.5.12 Transcendency results |
|
|
545 | (4) |
|
|
|
|
549 | (110) |
|
|
550 | (6) |
|
|
|
551 | (1) |
|
|
552 | (1) |
|
|
553 | (1) |
|
|
553 | (1) |
|
14.1.5 Connections to affine and projective planes |
|
|
554 | (1) |
|
14.1.6 Other finite field constructions for MOLS |
|
|
555 | (1) |
|
14.2 Lacunary polynomials over finite fields |
|
|
556 | (7) |
|
|
|
|
556 | (1) |
|
14.2.2 Lacunary polynomials |
|
|
556 | (1) |
|
14.2.3 Directions and Redei polynomials |
|
|
557 | (1) |
|
14.2.4 Sets of points determining few directions |
|
|
558 | (1) |
|
14.2.5 Lacunary polynomials and blocking sets |
|
|
559 | (2) |
|
14.2.6 Lacunary polynomials and blocking sets in planes of prime order |
|
|
561 | (1) |
|
14.2.7 Lacunary polynomials and multiple blocking sets |
|
|
562 | (1) |
|
14.3 Affine and projective planes |
|
|
563 | (11) |
|
|
|
|
563 | (1) |
|
|
564 | (1) |
|
14.3.3 Translation planes and spreads |
|
|
565 | (2) |
|
|
567 | (1) |
|
14.3.5 Flag-transitive affine planes |
|
|
568 | (1) |
|
|
569 | (2) |
|
|
571 | (1) |
|
|
572 | (1) |
|
|
573 | (1) |
|
|
574 | (15) |
|
|
|
14.4.1 Projective and affine spaces |
|
|
574 | (2) |
|
14.4.2 Collineations, correlations, and coordinate frames |
|
|
576 | (2) |
|
|
578 | (4) |
|
14.4.4 Partitions and cyclic projectivities |
|
|
582 | (1) |
|
|
583 | (3) |
|
14.4.6 κ-Arcs and linear MDS codes |
|
|
586 | (1) |
|
|
587 | (2) |
|
|
589 | (10) |
|
|
|
|
589 | (1) |
|
|
590 | (2) |
|
14.5.3 Difference families and balanced incomplete block designs |
|
|
592 | (2) |
|
|
594 | (2) |
|
14.5.5 Pairwise balanced designs |
|
|
596 | (1) |
|
14.5.6 Group divisible designs |
|
|
596 | (1) |
|
|
597 | (1) |
|
14.5.8 Packing and covering |
|
|
598 | (1) |
|
14.6 Difference sets Alexander Pott |
|
|
599 | (8) |
|
|
599 | (2) |
|
14.6.2 Difference sets in cyclic groups |
|
|
601 | (2) |
|
14.6.3 Difference sets in the additive groups of finite fields |
|
|
603 | (1) |
|
14.6.4 Difference sets and Hadamard matrices |
|
|
604 | (1) |
|
14.6.5 Further families of difference sets |
|
|
605 | (1) |
|
14.6.6 Difference sets and character sums |
|
|
606 | (1) |
|
|
606 | (1) |
|
14.7 Other combinatorial structures |
|
|
607 | (2) |
|
|
|
14.7.1 Association schemes |
|
|
607 | (1) |
|
|
608 | (1) |
|
147.3 Conference matrices |
|
|
609 | (10) |
|
|
610 | (1) |
|
14.7.5 Hall triple systems |
|
|
611 | (1) |
|
14.7.6 Ordered designs and perpendicular arrays |
|
|
611 | (1) |
|
14.7.7 Perfect hash families |
|
|
612 | (2) |
|
14.7.8 Room squares and starters |
|
|
614 | (3) |
|
14.7.9 Strongly regular graphs |
|
|
617 | (1) |
|
14.7.10 Whist tournaments |
|
|
617 | (2) |
|
14.8 (t, m, s)-nets and (t, s)-sequences |
|
|
619 | (11) |
|
|
|
619 | (2) |
|
14.8.2 Digital (t, m, s)-nets |
|
|
621 | (2) |
|
14.8.3 Constructions of (t, m, s)-nets |
|
|
623 | (2) |
|
14.8.4 (t, s)-sequences and (T, s)-sequences |
|
|
625 | (1) |
|
14.8.5 Digital (t, s)-sequences and digital (T, s)-sequences |
|
|
626 | (2) |
|
14.8.6 Constructions of (t, s)-sequences and (T, s)-sequences |
|
|
628 | (2) |
|
14.9 Applications and weights of multiples of primitive and other polynomials |
|
|
630 | (12) |
|
|
14.9.1 Applications where weights of multiples of a base polynomial are relevant |
|
|
630 | (1) |
|
14.9.1.1 Applications from other Handbook sections |
|
|
630 | (1) |
|
14.9.1.2 Application of polynomials to the construction of orthogonal arrays |
|
|
631 | (1) |
|
14.9.1.3 Application of polynomials to a card trick |
|
|
632 | (1) |
|
14.9.2 Weights of multiples of polynomials |
|
|
633 | (1) |
|
14.9.2.1 General bounds on d ((Cfn)) |
|
|
633 | (2) |
|
14.9.2.2 Bounds on d ((Cfn)) for polynomials of specific degree |
|
|
635 | (3) |
|
14.9.2.3 Bounds on d ((Cfn)) for polynomials of specific weight |
|
|
638 | (4) |
|
14.10 Ramanujan and expander graphs |
|
|
642 | (17) |
|
|
|
14.10.1 Graphs, adjacency matrices, and eigenvalues |
|
|
643 | (3) |
|
|
646 | (2) |
|
|
648 | (1) |
|
|
649 | (3) |
|
14.10.5 Explicit constructions of Ramanujan graphs |
|
|
652 | (3) |
|
14.10.6 Combinatorial constructions of expanders |
|
|
655 | (2) |
|
14.10.7 Zeta functions of graphs |
|
|
657 | (2) |
|
15 Algebraic coding theory |
|
|
659 | (82) |
|
15.1 Basic coding properties and bounds |
|
|
659 | (44) |
|
|
|
15.1.1 Channel models and error correction |
|
|
659 | (2) |
|
|
661 | (4) |
|
15.1.2.1 Standard array decoding of linear codes |
|
|
665 | (1) |
|
|
666 | (1) |
|
15.1.2.3 Reed-Muller codes |
|
|
667 | (1) |
|
15.1.2.4 Subfield and trace codes |
|
|
668 | (1) |
|
15.1.2.5 Modifying linear codes |
|
|
669 | (1) |
|
|
670 | (3) |
|
15.1.2.7 Asymptotic bounds |
|
|
673 | (1) |
|
|
674 | (1) |
|
15.1.3.1 Algebraic prerequisites |
|
|
675 | (1) |
|
15.1.3.2 Properties of cyclic codes |
|
|
676 | (1) |
|
15.1.3.3 Classes of cyclic codes |
|
|
677 | (12) |
|
15.1.4 A spectral approach to coding |
|
|
689 | (1) |
|
15.1.5 Codes and combinatorics |
|
|
690 | (2) |
|
|
692 | (1) |
|
15.1.6.1 Decoding BCH codes |
|
|
692 | (1) |
|
15.1.6.2 The Peterson-Gorenstein-Zierler decoder |
|
|
692 | (1) |
|
15.1.6.3 Berlekamp-Massey decoding |
|
|
693 | (1) |
|
15.1.6.4 Extended Euclidean algorithm decoding |
|
|
694 | (1) |
|
15.1.6.5 Welch-Berlekamp decoding of GRS codes |
|
|
695 | (1) |
|
15.1.6.6 Majority logic decoding |
|
|
696 | (1) |
|
15.1.6.7 Generalized minimum distance decoding |
|
|
696 | (2) |
|
15.1.6.8 List decoding - decoding beyond the minimum distance bound |
|
|
698 | (1) |
|
|
699 | (3) |
|
|
702 | (1) |
|
15.2 Algebraic-geometry codes |
|
|
703 | (10) |
|
|
15.2.1 Classical algebraic-geometry codes |
|
|
703 | (2) |
|
15.2.2 Generalized algebraic-geometry codes |
|
|
705 | (3) |
|
15.2.3 Function-field codes |
|
|
708 | (2) |
|
|
710 | (3) |
|
15.3 LDPC and Gallager codes over finite fields |
|
|
713 | (6) |
|
|
|
15.4 Turbo codes over finite fields |
|
|
719 | (8) |
|
|
|
719 | (1) |
|
15.4.1.1 Historical background |
|
|
719 | (1) |
|
|
719 | (2) |
|
15.4.2 Convolutional codes |
|
|
721 | (1) |
|
15.4.2.1 Non-recursive convolutional codes |
|
|
721 | (1) |
|
15.4.2.2 Distance properties of non-recursive convolutional codes |
|
|
722 | (1) |
|
15.4.2.3 Recursive convolutional codes |
|
|
723 | (1) |
|
15.4.2.4 Distance properties of recursive convolutional codes |
|
|
723 | (1) |
|
15.4.3 Permutations and interleavers |
|
|
724 | (1) |
|
15.4.4 Encoding and decoding |
|
|
725 | (1) |
|
15.4.5 Design of turbo codes |
|
|
725 | (1) |
|
15.4.5.1 Design of the recursive convolutional code |
|
|
726 | (1) |
|
15.4.5.2 Design of interleavers |
|
|
726 | (1) |
|
|
727 | (8) |
|
|
|
|
728 | (2) |
|
15.5.2 LT and fountain codes |
|
|
730 | (3) |
|
|
733 | (2) |
|
|
735 | (6) |
|
|
15.6.1 Space decomposition |
|
|
735 | (1) |
|
15.6.2 Vector transformation |
|
|
736 | (1) |
|
|
737 | (2) |
|
15.6.4 Historical notes and other results |
|
|
739 | (2) |
|
|
741 | (84) |
|
16.1 Introduction to cryptography |
|
|
741 | (9) |
|
|
16.1.1 Goals of cryptography |
|
|
742 | (1) |
|
16.1.2 Symmetric-key cryptography |
|
|
742 | (1) |
|
|
742 | (1) |
|
|
743 | (1) |
|
16.1.3 Public-key cryptography |
|
|
744 | (1) |
|
|
744 | (2) |
|
16.1.3.2 Discrete logarithm cryptosystems |
|
|
746 | (1) |
|
|
746 | (1) |
|
16.1.4 Pairing-based cryptography |
|
|
747 | (2) |
|
16.1.5 Post-quantum cryptography |
|
|
749 | (1) |
|
16.2 Stream and block ciphers |
|
|
750 | (14) |
|
|
|
16.2.1 Basic concepts of stream ciphers |
|
|
751 | (2) |
|
16.2.2 (Alleged) RC4 algorithm |
|
|
753 | (1) |
|
|
754 | (4) |
|
16.2.4 Basic structures of block ciphers |
|
|
758 | (1) |
|
|
759 | (1) |
|
16.2.6 Advanced Encryption Standard (AES) RIJNDAEL |
|
|
760 | (4) |
|
16.3 Multivariate cryptographic systems |
|
|
764 | (20) |
|
|
16.3.1 The basics of multivariate PKCs |
|
|
765 | (1) |
|
16.3.1.1 The standard (bipolar) construction of MPKCs |
|
|
765 | (1) |
|
16.3.1.2 Implicit form MPKCs |
|
|
766 | (1) |
|
16.3.1.3 Isomorphism of polynomials |
|
|
767 | (1) |
|
16.3.2 Main constructions and variations |
|
|
767 | (1) |
|
16.3.2.1 Historical constructions |
|
|
767 | (1) |
|
16.3.2.2 Triangular constructions |
|
|
768 | (1) |
|
16.3.2.3 Big-field families: Matsumoto-Imai (C*) and HFE |
|
|
769 | (1) |
|
16.3.2.4 Oil and vinegar (unbalanced and balanced) and variations |
|
|
770 | (2) |
|
16.3.2.5 UOV as a booster stage |
|
|
772 | (1) |
|
16.3.2.6 Plus-Minus variations |
|
|
772 | (1) |
|
16.3.2.7 Internal perturbation |
|
|
773 | (1) |
|
16.3.2.8 Vinegar as an external perturbation and projection |
|
|
774 | (1) |
|
16.3.2.9 TTM and related schemes: "lock" or repeated triangular |
|
|
774 | (1) |
|
16.3.2.10 Intermediate fields: MFE and IC |
|
|
775 | (1) |
|
16.3.2.11 Odd characteristic |
|
|
776 | (1) |
|
16.3.2.12 Other constructions |
|
|
776 | (1) |
|
|
776 | (1) |
|
16.3.3.1 Linearization equations |
|
|
776 | (1) |
|
16.3.3.2 Critical bilinear relations |
|
|
776 | (1) |
|
16.3.3.3 HOLEs (higher-order linearization equations) |
|
|
777 | (1) |
|
16.3.3.4 Differential attacks |
|
|
777 | (1) |
|
16.3.3.5 Attacking internal perturbations |
|
|
777 | (1) |
|
16.3.3.6 The skew symmetric transformation |
|
|
778 | (1) |
|
16.3.3.7 Multiplicative symmetry |
|
|
779 | (1) |
|
|
779 | (1) |
|
16.3.3.9 MinRank attacks on big-field schemes |
|
|
780 | (1) |
|
16.3.3.10 Distilling oil from vinegar and other attacks on UOV |
|
|
780 | (1) |
|
|
781 | (1) |
|
16.3.3.12 Direct attacks using polynomial solvers |
|
|
781 | (1) |
|
|
782 | (2) |
|
16.4 Elliptic curve cryptographic systems |
|
|
784 | (13) |
|
|
16.4.1 Cryptosystems based on elliptic curve discrete logarithms |
|
|
784 | (1) |
|
|
784 | (1) |
|
16.4.1.2 Cryptographic primitives |
|
|
784 | (1) |
|
|
785 | (2) |
|
16.4.1.4 Random curves: point counting |
|
|
787 | (1) |
|
16.4.2 Pairing based cryptosystems |
|
|
788 | (1) |
|
16.4.2.1 Cryptographic pairings |
|
|
789 | (2) |
|
16.4.2.2 Pairings and twists |
|
|
791 | (1) |
|
16.4.2.3 Explicit isomorphisms |
|
|
792 | (1) |
|
16.4.2.4 Curve constructions |
|
|
793 | (2) |
|
16.4.2.5 Hashing into elliptic curves |
|
|
795 | (2) |
|
16.5 Hyperelliptic curve cryptographic systems |
|
|
797 | (6) |
|
|
16.5.1 Cryptosystems based on hyperelliptic curve discrete logarithms |
|
|
797 | (1) |
|
|
797 | (1) |
|
|
798 | (1) |
|
16.5.4 Curves of higher genus |
|
|
799 | (1) |
|
|
799 | (2) |
|
|
801 | (1) |
|
16.5.7 Random curves: point counting |
|
|
802 | (1) |
|
16.5.8 Pairings in hyperelliptic curves |
|
|
803 | (1) |
|
16.6 Cryptosystems arising from Abelian varieties |
|
|
803 | (8) |
|
|
|
804 | (1) |
|
|
804 | (1) |
|
16.6.3 Jacobians of curves |
|
|
804 | (1) |
|
16.6.4 Restriction of scalars |
|
|
804 | (1) |
|
|
805 | (1) |
|
16.6.6 The characteristic polynomial of an endomorphism |
|
|
805 | (1) |
|
|
805 | (2) |
|
16.6.8 Arithmetic on an Abelian variety |
|
|
807 | (1) |
|
|
808 | (1) |
|
16.6.10 The discrete logarithm problem |
|
|
808 | (1) |
|
16.6.11 Weil descent attack |
|
|
809 | (1) |
|
16.6.12 Pairings based cryptosystems |
|
|
810 | (1) |
|
16.7 Binary extension field arithmetic for hardware implementations |
|
|
811 | (14) |
|
|
|
16.7.1 Preamble and basic terminologies |
|
|
811 | (1) |
|
16.7.2 Arithmetic using polynomial operations |
|
|
812 | (4) |
|
16.7.3 Arithmetic using matrix operations |
|
|
816 | (1) |
|
16.7.4 Arithmetic using normal bases |
|
|
817 | (2) |
|
16.7.5 Multiplication using optimal normal bases |
|
|
819 | (3) |
|
|
822 | (3) |
|
17 Miscellaneous applications |
|
|
825 | (26) |
|
17.1 Finite fields in biology |
|
|
825 | (9) |
|
|
|
17.1.1 Polynomial dynamical systems as framework for discrete models in systems biology |
|
|
825 | (1) |
|
17.1.2 Polynomial dynamical systems |
|
|
826 | (1) |
|
17.1.3 Discrete model types and their translation into PDS |
|
|
827 | (2) |
|
17.1.3.1 Boolean network models |
|
|
829 | (1) |
|
|
829 | (2) |
|
17.1.3.3 Petri nets and agent-based models |
|
|
831 | (1) |
|
17.1.4 Reverse engineering and parameter estimation |
|
|
831 | (1) |
|
17.1.4.1 The minimal-sets algorithm |
|
|
831 | (1) |
|
17.1.4.2 Parameter estimation using the Grobner fan of an ideal |
|
|
831 | (1) |
|
17.1.5 Software for biologists and computer algebra software |
|
|
832 | (1) |
|
17.1.6 Specific polynomial dynamical systems |
|
|
832 | (1) |
|
17.1.6.1 Nested canalyzing functions |
|
|
832 | (2) |
|
17.1.6.2 Parameter estimation resulting in nested canalyzing functions |
|
|
834 | (1) |
|
17.1.6.3 Linear polynomial dynamical systems |
|
|
834 | (1) |
|
17.1.6.4 Conjunctive/disjunctive networks |
|
|
834 | (1) |
|
17.2 Finite fields in quantum information theory |
|
|
834 | (7) |
|
|
|
17.2.1 Mutually unbiased bases |
|
|
835 | (1) |
|
17.2.2 Positive operator-valued measures |
|
|
836 | (1) |
|
17.2.3 Quantum error-correcting codes |
|
|
837 | (2) |
|
|
839 | (1) |
|
17.2.5 Quantum function reconstruction |
|
|
840 | (1) |
|
17.2.6 Further connections |
|
|
840 | (1) |
|
17.3 Finite fields in engineering |
|
|
841 | (10) |
|
|
|
17.3.1 Binary sequences with small aperiodic autocorrelation |
|
|
841 | (1) |
|
17.3.2 Sequence sets with small aperiodic auto- and crosscorrelation |
|
|
842 | (1) |
|
17.3.3 Binary Golay sequence pairs |
|
|
843 | (1) |
|
17.3.4 Optical orthogonal codes |
|
|
844 | (1) |
|
17.3.5 Sequences with small Hamming correlation |
|
|
845 | (1) |
|
17.3.6 Rank distance codes |
|
|
846 | (1) |
|
|
847 | (1) |
|
17.3.8 Coding over networks |
|
|
848 | (3) |
Bibliography |
|
851 | (160) |
Index |
|
1011 | |