Muutke küpsiste eelistusi

E-raamat: Handbook of Homotopy Theory

Edited by
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 195,00 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The Handbook of Homotopy Theory provides a panoramic view of an active area in mathematics that is currently seeing dramatic solutions to long-standing open problems, and is proving itself of increasing importance across many other mathematical disciplines. The origins of the subject date back to work of Henri Poincaré and Heinz Hopf in the early 20th century, but it has seen enormous progress in the 21st century. A highlight of this volume is an introduction to and diverse applications of the newly established foundational theory of ¥ -categories.

The coverage is vast, ranging from axiomatic to applied, from foundational to computational, and includes surveys of applications both geometric and algebraic. The contributors are among the most active and creative researchers in the field. The 22 chapters by 31 contributors are designed to address novices, as well as established mathematicians, interested in learning the state of the art in this field, whose methods are of increasing importance in many other areas.
Preface

Gregory Arone and Michael Ching

1 Goodwillie calculus

David Ayala and John Francis

2 A factorization homology primer

Anthony Bahri, Martin Bendersky, and Frederick R. Cohen

3 Polyhedral products and features of their homotopy theory

Paul Balmer

4 A guide to tensor-triangular classification

Tobias Barthel and Agnes Beaudry

5 Chromatic structures in stable homotopy theory

Mark Behrens

6 Topological modular and automorphic forms

Julia E. Bergner

7 A survey of models for (1,n)-categories

Gunnar Carlsson

8 Persistent homology and applied homotopy theory

Natalia Castellana

9 Algebraic models in the homotopy theory of classifying spaces

Ralph L. Cohen

10 Floer homotopy theory, revisited

Benoit Fresse

11 Little discs operads, graph complexes and GrothendieckTeichmüller

groups

Soren Galatius and Oscar Randal-Williams

12 Moduli spaces of manifolds: a users guide

13 An introduction to higher categorical algebra

Moritz Groth

14 A short course on 1-categories

Lars Hesselholt and Thomas Nikolaus

15 Topological cyclic homology

Gijs Heuts

16 Lie algebra models for unstable homotopy theory

Michael A. Hill

17 Equivariant stable homotopy theory

Daniel C. Isaksen and Paul Arne Ostvar

18 Motivic stable homotopy groups

Tyler Lawson

19 En-spectra and Dyer-Lashof operations

Wolfgang Luck

20 Assembly maps

Nathaniel Stapleton

21 Lubin-Tate theory, character theory, and power operations

Kirsten Wickelgren and Ben William

22 Unstable motivic homotopy theory

Index
Haynes Miller is Professor of Mathematics at the Massachusetts Institute of Technology. Past managing editor of the Bulletin of the American Mathematical Society and author of some sixty mathematics articles, he has directed the PhD work of 27 students during his tenure at MIT. His visionary work in university-level education was recognized by the award of MITs highest teaching honor, the Margaret MacVicar Fellowship.