Muutke küpsiste eelistusi

E-raamat: Handbook of Industrial Crystallization

Edited by (Massachusetts Institute of Technology), Edited by , Edited by
  • Formaat: EPUB+DRM
  • Ilmumisaeg: 20-Jun-2019
  • Kirjastus: Cambridge University Press
  • Keel: eng
  • ISBN-13: 9781108680202
Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 208,72 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: EPUB+DRM
  • Ilmumisaeg: 20-Jun-2019
  • Kirjastus: Cambridge University Press
  • Keel: eng
  • ISBN-13: 9781108680202
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Providing a firm foundation in the fundamentals of crystallization, followed by specific chapters on applications, this book is ideal as a reference for industrial and academic scientists and engineers.

Learn from the experts about industrial crystallization in this third edition of a widely regarded classic that has been completely revised to reflect the latest developments in the field. New chapters on crystal nucleation, molecular modelling application, and precipitation and crystallization of pigments and dyes are included, as well as completely revised chapters on crystallization of proteins, crystallizer selection and design, control of crystallization processes, and process analytical technology. Richly illustrated with 150 new diagrams and photographs, and with dozens of practical hands-on examples, this is an ideal introduction for newcomers, and serves as an excellent reference for experienced professionals covering aspects of industrial crystallization in a single, complete volume.

Arvustused

'In its experimental and theoretical aspects, the present handbook is well organized. One of the major strengths of the book is the fact that, despite its wide range of topics, the editors succeeded in combining the different contributions in a very coherent framework. The book represents a good overview of knowledge of the widespread field of industrial crystallization. I recommend the book to scientists and engineers working in this field.' Klaus-Werner Benz, Journal of Applied Crystallography

Muu info

In-depth coverage of crystallization science and technology suitable for industrial and academic scientists and engineers.
List of Contributors
viii
Preface to the First Edition ix
Preface to the Second Edition xi
Preface to the Third Edition xiii
1 Solutions and Solution Properties
1(31)
Jennifer Moffitt Schall
Allan S. Myerson
1.1 Introduction and Motivation
1(1)
1.2 Units
1(1)
1.3 Solubility of Inorganics
1(8)
1.4 Solubility of Organics
9(8)
1.5 Supersaturation and Metastability
17(5)
1.6 Solution Properties
22(3)
1.7 Thermal Properties
25(6)
References
31(1)
2 Crystals and Crystal Growth
32(44)
Alfred Y. Lee
Deniz Erdemir
Allan S. Myerson
2.1 Introduction
32(1)
2.2 Basic Concepts of the Solid State
32(9)
2.3 Crystal Nucleation
41(1)
2.4 Crystal Growth
41(10)
2.5 Crystal Habit
51(8)
2.6 Crystal Polymorphism
59(5)
2.7 Multicomponent Crystals
64(4)
2.8 Crystal Size
68(2)
2.9 Concluding Remarks
70(1)
References
71(5)
3 Crystal Nucleation
76(39)
Deniz Erdemir
Alfred Y. Lee
Allan S. Myerson
3.1 Introduction
76(1)
3.2 Homogeneous Nucleation
77(18)
3.3 Heterogeneous Nucleation
95(1)
3.4 Secondary Nucleation
96(2)
3.5 Nucleation Kinetics
98(4)
3.6 Control of Nucleation
102(2)
3.7 Nucleation in Polymorphic Systems
104(4)
3.8 Methods to Induce Nucleation
108(2)
References
110(5)
4 The Influence of Impurities and Additives on Crystallization
115(21)
Lucrece H. Nicoud
Allan S. Myerson
4.1 Introduction
115(1)
4.2 Retention of Foreign Species in Crystals
115(7)
4.3 Impact of Foreign Species on Growth Rate
122(6)
4.4 Impact of Foreign Species on Crystal Properties
128(4)
4.5 Conclusion
132(1)
References
133(3)
5 Molecular Modeling Applications in Crystallization
136(36)
Keith Chadwick
Jie Chen
Erik E. Santiso
Bernhardt L. Trout
5.1 Introduction
136(1)
5.2 Crystal Structure Visualization and Analysis Software
136(2)
5.3 Morphology Prediction
138(7)
5.4 Crystal Structure Determination from X-Ray Powder Diffraction Data
145(2)
5.5 Modeling Nucleation and Phase Transitions
147(7)
5.6 Polymorph Searching and Prediction
154(10)
5.7 Solubility Prediction
164(4)
5.8
Chapter Summary and Outlook
168(1)
References
169(3)
6 Crystallization Process Analysis by Population Balance Modeling
172(25)
Ake C. Rasmuson
6.1 Introduction
172(1)
6.2 Particle Size and Size Distribution
173(4)
6.3 Crystallization Kinetics
177(1)
6.4 Population Balance Modeling
178(3)
6.5 The Idealized MSMPR Concept
181(3)
6.6 Continuous Crystallization and Deviations from the MSMPR Model
184(2)
6.7 Batch Crystallization
186(2)
6.8 Population Balance Modeling of Non-Well-Mixed Processes
188(1)
6.9 Determination of Crystallization Kinetics for Process Modeling
189(4)
6.10 Conclusions
193(1)
References
194(3)
7 Selection and Design of Industrial Crystallizers
197(19)
Herman J. M. Kramer
Richard Lakerveld
7.1 Introduction
197(1)
7.2 Performance Criteria
198(1)
7.3 Crystallization Methods
198(3)
7.4 Equipment Design
201(10)
7.5 Instrumentation and Actuation
211(1)
7.6 Case Study: Optimization of a Base-Case Design
212(3)
References
215(1)
8 Precipitation Processes
216(50)
Piotr H. Karpinski
Jerzy Baldyga
8.1 Introduction
216(1)
8.2 Physical and Thermodynamic Properties
217(8)
8.3 Nucleation Kinetics
225(3)
8.4 Crystal Growth Kinetics in Precipitation
228(3)
8.5 Other Processes and Models in Precipitation
231(14)
8.6 Experimental Techniques
245(3)
8.7 Modeling and Control of Crystal Size and Crystal Size Distribution
248(5)
8.8 Scale-Up Rules for Precipitation
253(3)
8.9 Precipitation in Practice
256(6)
8.10 Summary
262(1)
References
263(3)
9 Melt Crystallization
266(24)
Joachim Ulrich
Torsten Stelzer
9.1 Definitions
266(1)
9.2 Benefits of Melt Crystallization
266(2)
9.3 Phase Diagrams
268(2)
9.4 Crystallization Kinetics
270(3)
9.5 Processes of Melt Crystallization
273(2)
9.6 Post-Crystallization Treatments
275(5)
9.7 Concepts of Commercial Plants
280(5)
9.8 Eutectic Freeze Crystallization
285(2)
9.9 Summary and View to the Future
287(1)
References
287(3)
10 Crystallizer Mixing Understanding and Modeling Crystallizer Mixing and Suspension Flow
290(23)
Daniel A. Green
10.1 Introduction
290(1)
10.2 Crystallizer Flows
290(4)
10.3 Crystallizers
294(6)
10.4 Scale-Up
300(2)
10.5 Modeling
302(8)
10.6 Summary
310(1)
References
311(2)
11 Monitoring and Advanced Control of Crystallization Processes
313(33)
Zoltan K. Nagy
Mitsuko Fujiwara
Richard D. Braatz
11.1 Introduction
313(3)
11.2 Crystallization Process Monitoring
316(7)
11.3 Model-Based Optimization and Control of Crystallization Processes
323(14)
11.4 Model-Free (Direct Design) Approaches
337(5)
11.5 Summary
342(1)
References
342(4)
12 Batch Crystallization
346(34)
Piotr H. Karpinski
Jerzy Baldyga
12.1 Introduction
346(1)
12.2 Batch Crystallizers
346(3)
12.3 Batch Crystallization Analysis
349(7)
12.4 Factors Affecting Batch Crystallization
356(12)
12.5 Batch Crystallization Operations
368(7)
12.6 Scale-Up of Batch Crystallization
375(1)
12.7 Summary
376(1)
References
377(3)
13 Crystallization in the Pharmaceutical Industry
380(34)
Simon N. Black
13.1 Introduction
380(1)
13.2 Simple Systems
381(4)
13.3 Increasing Complexity
385(6)
13.4 Crystallization Kinetics
391(9)
13.5 Particle Engineering
400(5)
13.6 After the Crystallizer
405(2)
13.7 Intermediates
407(1)
13.8 Other Crystallizations
408(3)
13.9 Summary
411(1)
References
411(3)
14 Crystallization of Proteins
414(46)
Peter G. Vekilov
14.1 Introduction
414(1)
14.2 Protein and Protein Crystals
414(3)
14.3 The Thermodynamics of Protein Crystallization
417(4)
14.4 Methods of Protein Crystallization
421(3)
14.5 The Role of Nonprotein Solution Components and the Intermolecular Interactions in Solution
424(6)
14.6 Crystal Nucleation
430(11)
14.7 Mechanisms of Crystal Growth
441(7)
14.8 Impurities
448(1)
14.9 Crystal Perfection
449(5)
14.10 Concluding Remarks
454(1)
References
454(6)
15 Crystallization in Foods
460(19)
Richard W. Hartel
15.1 Characteristics of Crystallization in Foods
460(3)
15.2 Controlling Crystallization in Foods
463(11)
15.3 Factors Affecting Control of Crystallization in Foods
474(3)
15.4 Summary
477(1)
References
477(2)
16 Precipitation and Crystallization of Pigments
479(34)
Lars Vicum
Marco Mazzotti
Martin Iggland
16.1 Introduction
479(1)
16.2 Types of Pigments, Pigment Chemistry, and Pigment Properties
479(10)
16.3 On the Design of Pigment Synthesis Processes
489(13)
16.4 Practical Applications and Special Aspects
502(9)
References
511(2)
Index 513
Allan S. Myerson is Professor of the Practice of Chemical Engineering in the Department of Chemical Engineering at the Massachusetts Institute of Technology. Professor Myerson's research focuses on separations processes in the chemical and pharmaceutical industry with an emphasis on crystallization from solution, nucleation, polymorphism and pharmaceutical manufacturing. Professor Myerson has received a number of award including the American Chemical Society Award in Separations Science and Technology (2008), the AIChE Separations Division Clarence G. Gerhold Award (2015) and the AICHE Process Development Division Excellence in Process Development Research Award (2015). Deniz Erdemir is a Principal Scientist at Bristol-Myers Squibb (BMS). Dr Erdemir's research focus lies at the drug substance/drug product interface with emphasis on crystal polymorphism and design of materials via particle engineering to enable robust drug products. She has published twelve papers and she is the inventor on two US patents. Alfred Y. Lee is an Associate Principal Scientist in the Department of Process Research and Development at Merck & Co., Inc. Prior to his current position, Dr Lee was a Principal Scientist at GlaxoSmithKline PLC. Dr. Lee's scientific interests are in the area of crystal engineering, crystallization process development, materials characterization, polymorphism, and the physical chemistry of solids.