Muutke küpsiste eelistusi

E-raamat: Handbook of Machine Learning for Computational Optimization: Applications and Case Studies

Edited by (B.M. Inst. of Eng. and Tech., Sonepat), Edited by (B.M. Inst. of Eng. and Tech., Sonepat), Edited by (Universiti Teknologi PETRONAS, Malaysia), Edited by (Sharda University, Greater Noida, India)
  • Formaat - PDF+DRM
  • Hind: 80,59 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Technology is moving at an exponential pace in this era of computational intelligence. Machine learning has emerged as one of the most promising tools used to challenge and think beyond current limitations. This handbook will provide readers with a leading edge to improving their products and processes through optimal and smarter machine learning techniques.

This handbook focuses on new machine learning developments that can lead to newly developed applications. It uses a predictive and futuristic approach, which makes machine learning a promising tool for processes and sustainable solutions. It also promotes newer algorithms that are more efficient and reliable for new dimensions in discovering other applications, and then goes on to discuss the potential in making better use of machines in order to ensure optimal prediction, execution, and decision-making.

Individuals looking for machine learning-based knowledge will find interest in this handbook. The readership ranges from undergraduate students of engineering and allied courses to researchers, professionals, and application designers.



Machine Learning has emerged as one of the most promising tools used to challenge and think beyond current limitations. This handbook will provide readers with a leading edge to improving their products and processes through optimal and smarter machine learning techniques.

Chapter 1 Random Variables in Machine Learning
Chapter 2 Analysis of EMG
Signals using Extreme Learning Machine with Nature Inspired Feature Selection
Techniques
Chapter 3 Detection of Breast Cancer by Using Various Machine
Learning and Deep Learning Algorithms
Chapter 4 Assessing the Radial
Efficiency Performance of Bus Transport Sector Using Data Envelopment
Analysis
Chapter 5 Weight-Based CodesA Binary Error Control Coding SchemeA
Machine Learning Approach
Chapter 6 Massive Data Classification of Brain
Tumors Using DNN: Opportunity in Medical Healthcare 4.0 through Sensors
Chapter 7 Deep Learning Approach for Traffic Sign Recognition on Embedded
Systems
Chapter 8 Lung Cancer Risk Stratification Using ML and AI on Sensor-
Based IoT: An Increasing Technological Trend for Health of Humanity
Chapter 9
Statistical Feedback Evaluation System
Chapter 10 Emission of Herbal Woods to
Deal with Pollution and Diseases: Pandemic-Based Threats
Chapter 11
Artificial Neural Networks: A Comprehensive Review
Chapter 12 A Case Study on
Machine Learning to Predict the Students Result in Higher Education
Chapter
13 Data Analytic Approach for Assessment Status of Awareness of Tuberculosis
in Nigeria
Chapter 14 Active Learning from an Imbalanced Dataset: A Study
Conducted on the Depression, Anxiety, and Stress Dataset
Chapter 15
Classification of the Magnetic Resonance Imaging of the Brain Tumor Using the
Residual Neural Network Framework
Vishal Jain is an Associate Professor in Deptt. of CSE at Sharda University, Greater Noida, India. He has earlier worked with Bharati Vidyapeeths Institute of Computer Applications and Management (BVICAM), New Delhi, India (affiliated with Guru Gobind Singh Indraprastha University, and accredited by the All India Council for Technical Education). He first joined BVICAM as Assistant Professor. Before that, he has worked for several years at the Guru Presmsukh Memorial College of Engineering, Delhi, India. He has more than 350 research citation indices with Google scholar (h-index score 9 and i-10 index 9). He has authored more than 70 research papers in reputed conferences and journals including Web of Science and Scopus. He has authored and edited more than 10 books with various reputed publishers including Springer, Apple Academic Press, Scrivener, Emerald and IGI-Global. His research areas include information retrieval, semantic web, ontology engineering, data mining, adhoc networks, and sensor networks. He has recipient a Young Active Member Award for the year 201213 from the Computer Society of India, Best Faculty Award for the year 2017 and Best Researcher Award for the year 2019 from BVICAM, New Delhi.

Sapna Juneja is Professor in IMS, Ghaziabad, India. Earlier she has worked as Professor in Deptt. of CSE at IITM Group of Institutions and BMIET, Sonepat. She has more than 16 years of teaching experience. She completed her doctorate and masters in Computer Science and Engineering from M.D.University, Rohtak in 2018 and 2010 respectively. Her broad area of research is Software Reliability of Embedded System. Her areas of interest include Software Engineering, Computer Networks, Operating System, Database Management Systems, and Artificial Intelligence etc. She has guided several research thesis of UG and PG students in Computer Science and Engineering. She is editing book on recent technological developments.

Abhinav Juneja is currently working as Professor in Deptt. of IT at KIET Group of Institutions, Delhi-NCR, Ghaziabad, India. Earlier, he has worked as Associate Director & Professor in Deptt of CSE at BMIET, Sonepat. He has more than 19 years of teaching experience for post graduate and under graduate engineering students. He completed his Doctorate in Computer Science and Engineering from M.D.University, Rohtak in 2018 and has done masters in Information Technology from GGSIPU, Delhi. He has research interests in the field of Software Reliability, IoT, Machine Learning and soft computing. He has published several papers in reputed national and international journals. He has been reviewer of several journals of repute and has been in various committees of international conferences.

Ramani Kannan is currently working as Senior Lecturer, Center for Smart Grid Energy Research, Institute of Autonomous system. University Teknologi PETRONAS (UTP), Malaysia. Dr. Kanan completed Ph.D. (Power Electronics and Drives) from Anna University, India in 2012, M.E. (Power Electronics and Drives) from Anna University, India in 2006, B.E (Electronics and Communication) from Bharathiyar University, India in 2004. He has more than 15 years of experience in prestigious educational institutes. Dr. Kanan has published more than 130 papers in various reputed nation and international journals and conferences. He is the editor, co-editor, guest editor and reviewer of various books including Springer Nature, Elsevier etc. He has received award for best presenter in CENCON 2019, IEEE Conference on Energy Conversion (CENCON 2019) Indonesia.