Muutke küpsiste eelistusi

E-raamat: Handbook of Metaheuristic Algorithms: From Fundamental Theories to Advanced Applications

(Assistant Professor, Department of Computer Science and Engineering, National Sun Yat-sen University, Kaohsiung, Taiwan, R.O.C), (Professor, Department of Computer Science and Engineering, National Sun Yat-sen University, Kaohsiung, Ta)
  • Formaat - EPUB+DRM
  • Hind: 188,37 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Handbook of Metaheuristic Algorithms: From Fundamental Theories to Advanced Applications provides a brief introduction to metaheuristic algorithms from the ground up, including basic ideas and advanced solutions. Although readers may be able to find source code for some metaheuristic algorithms on the Internet, the coding styles and explanations are generally quite different, and thus requiring expanded knowledge between theory and implementation. This book can also help students and researchers construct an integrated perspective of metaheuristic and unsupervised algorithms for artificial intelligence research in computer science and applied engineering domains.

Metaheuristic algorithms can be considered the epitome of unsupervised learning algorithms for the optimization of engineering and artificial intelligence problems, including simulated annealing (SA), tabu search (TS), genetic algorithm (GA), ant colony optimization (ACO), particle swarm optimization (PSO), differential evolution (DE), and others. Distinct from most supervised learning algorithms that need labeled data to learn and construct determination models, metaheuristic algorithms inherit characteristics of unsupervised learning algorithms used for solving complex engineering optimization problems without labeled data, just like self-learning, to find solutions to complex problems.

  • Presents a unified framework for metaheuristics and describes well-known algorithms and their variants
  • Introduces fundamentals and advanced topics for solving engineering optimization problems, e.g., scheduling problems, sensors deployment problems, and clustering problems
  • Includes source code based on the unified framework for metaheuristics used as examples to show how TS, SA, GA, ACO, PSO, DE, parallel metaheuristic algorithm, hybrid metaheuristic, local search, and other advanced technologies are realized in programming languages such as C++ and Python

Arvustused

"The present book provides resources, references and alternative ways of simple and fast solution methods and algorithms. It is organized in such a way that the readers can not only realize most of the metaheuristic algorithms, but also use them to solve real-world problems. The book can be used by students and researchers as a reference for self-study to enter this research domain or by teachers as a reference or textbook for a course.... The ultimate goal of the book is to share with the audience the authors experience and know-how on metaheuristic algorithms from the ground up, that is, from the basic ideas to advanced technologies, even for readers who have no background knowledge in artificial intelligence or machine learning." --Haydar Akca, zbMATHOpen

PART 1 Fundamentals

1. Introduction

2. Optimization problems

3. Traditional methods

4. Metaheuristic algorithms

5. Simulated annealing

6. Tabu search

7. Genetic algorithm

8. Ant colony optimization

9. Particle swarm optimization

10. Differential evolution

PART 2 Advanced technologies

11. Solution encoding and initialization operator

12. Transition operator

13. Evaluation and determination operators

14. Parallel metaheuristic algorithm

15. Hybrid metaheuristic and hyperheuristic algorithms

16. Local search algorithm

17. Pattern reduction

18. Search economics

19. Advanced applications

20. Conclusion and future research directions

A. Interpretations and analyses of simulation results

B. Implementation in Python

Chun-Wei Tsai received his Ph.D. degree from the Department of Computer Science and Engineering, National Sun Yat-sen University, Kaohsiung, Taiwan in 2009 where he is currently an assistant professor. He has more than 20 years of experience in metaheuristic algorithms and their applications and has served as the secretary general of Taiwan Association of Cloud Computing from 2018 to 2021; as an associate editor for Journal of Internet Technology, IEEE Access, IET Networks, and IEEE Internet of Things Journal since 2014, 2017, 2018, and 2020, respectively. He has also been a member of the Editorial Board of the Elsevier Journal of Network and Computer Applications (JNCA) and Elsevier ICT Express since 2017 and 2021, respectively. His research interests include computational intelligence, data mining, cloud computing, and internet of things. Ming-Chao Chiang received his B.S. degree in Management Science from National Chiao Tung University, Hsinchu, Taiwan, R.O.C. in 1978, and the M.S., M.Phil., and Ph.D. degrees in Computer Science from Columbia University, New York, USA in 1991, 1998, and 1998, respectively. He has over 12 years of experience in the software industry encompassing a wide variety of roles and responsibilities in both large and start-up companies in Taiwan and the USA before joining the faculty of the Department of Computer Science and Engineering, National Sun Yat-sen University, Kaohsiung, Taiwan, R.O.C. in 2003, where he is currently a professor. His research interests include image processing, evolutionary computation, and system software.